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Abstract.—Tag return models can be used to estimate survival and tag recovery rates. The
additional knowledge of an estimated tag reporting rate allows separation of the total mortality
rate into fishing and natural mortality components. We briefly review two methods for estimating
tag reporting rates: high-reward tags with a 100% reporting rate, and catch from multiple-com-
ponent fisheries with a 100% reporting rate in one component (e.g., due to the presence of observers
in a boat-based commercial fishery). The assumptions of each method are presented and discussed.
We simulated the effects of combining the two methods to obtain more robust estimates of the
tag reporting rate and other important parameters, such as the exploitation rate. When high-reward
tags did not produce a 100% reporting rate or when the observer component in a multiple-
component fishery did not have a 100% reporting rate, the combination of methods provided better
estimates. It is still necessary to assume that the high-reward tags in the observer component of
the fishery have 100% reporting rate. However, this is a much weaker reporting rate assumption
than those used for each method alone and is much more likely to be satisfied in real fisheries
applications. Therefore, the combined method should tend to give less biased estimates in practice
than either method used separately.

Brownie et al. (1985) described models that are
now the standard method of analyzing wildlife tag
return data. The Brownie models also provide a
sound basis for many new developments in the
analysis of fishery tag return data (Pollock et al.
1991; Hearn et al. 1998; Hoenig et al. 1998a,
1998b). While the basic Brownie models allow
estimation of survival and tag recovery rates, the
additional knowledge of the estimated tag report-
ing rate allows one to partition the total mortality
rate into its two components, the fishing and nat-
ural mortality rates (Pollock et al. 1991, 2001;
Hoenig et al. 1998a, 1998b).

In the Brownie et al. (1985) method, cohorts of
animals are tagged in different years, and then,
over a period of time, tags from recovered animals
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are collected and used to estimate the various pa-
rameters. Recovery data for each year of release
have a multinomial distribution, and the overall
likelihood for the model is simply the product of
the individual cohort likelihoods because the co-
horts are independent (Brownie et al. 1985). The
model can be used to estimate survival rate S and
tag recovery rate f. Note that the tag recovery rate
is the product of two parts: the exploitation rate u
(fraction of the cohort present at the start of a
recovery year that is harvested during the year)
and the probability l that a tag on a harvested fish
will be reported. Therefore, if l can be estimated,
then u can also be estimated. Hoenig et al. (1998a,
1998b) found it convenient to express the Brownie
models in terms of the instantaneous rates of fish-
ing mortality (F) and natural mortality (M), an
approach that assumes fishing and natural mortal-
ity are additive. The survival rate is always of the
form
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S 5 exp(2F 2 M ),i i i

where the subscript i refers to the year. Generally,
all the Mi are assumed equal to a constant but
unknown value M. The form of the exploitation
rate u depends on the timing of the fishery (Hoenig
et al. 1998a, 1998b). For a Type I (pulse) fishery,

u 5 1 2 exp(2F ),i i

and for a Type II (continuous) fishery,

Fiu 5 [1 2 exp(2F 2 M )].i i(F 1 M )i

Several assumptions are inherent in these mul-
tiple-year tagging models and are crucial for their
validity. The assumptions are as follows: (1) the
tagged samples (both high-reward and standard)
are representative of the target population; (2) tags
are not lost; (3) survival rates are not affected by
tagging; (4) the year of tag recovery is correctly
reported; (5) the fates of all tagged fish are inde-
pendent; (6) all tagged fish within a cohort have
the same annual survival and recovery rates; and
(7) fishing and natural mortality processes are ad-
ditive.

We briefly review two methods of estimating tag
reporting rates, which provides the basis for es-
timating F and M. One method involves high-re-
ward tagging and the other involves a two-com-
ponent fishery with observers on one component,
resulting in 100% tag reporting. We then focus on
combining the two methods. The results of a sim-
ulation we conducted with the SURVIV program
(White 1983) are used to explore the accuracy and
precision of estimates from the models when as-
sumptions are violated. We end with our conclu-
sions and suggestions for future research.

Methods for Estimating Reporting Rate

Several methods have been used to estimate the
tag reporting rate. These include the use of tagging
data alone, surreptitiously planted tags, angler or
port surveys, high-reward tagging, and catch data
from multiple-component fisheries with a 100%
reporting rate in one component. Our previous pa-
per (Pollock et al. 2001) reviews these methods;
therefore, the present paper focuses only on the
high-reward tagging and multiple-component fish-
ery methods.

High-Reward Tagging

When both standard and high-reward tags are
used, the tag reporting rate can be estimated if the

reward level is high enough to produce a 100%
reporting rate for high-reward tags. The standard
tag return rate can then be estimated via the ratio
of the recovery rate of standard tags to the recovery
rate of high-reward tags (Henny and Burnham 1976;
Conroy and Blandin 1984; Pollock et al. 1991). If
we consider only recoveries from one cohort, then
the reporting rate can be estimated as

l̂ 5 (R /N )/(R /N ) 5 R N /R N ,t t r r t r r t (1)

where Rt is the number of standard tags returned,
Nt is the number of standard tags released, Rr is
the number of high-reward tags returned, and Nr

is the number of high-reward tags released.
Two additional assumptions necessary for high-

reward tagging studies are that the high-reward
tags are all reported and that the high-reward tag-
ging does not change the reporting rate of standard
tags.

If the assumption that the reward is sufficient to
elicit a 100% reporting rate is violated, then the
estimate of the standard tag reporting rate will be
positively biased. Nichols et al. (1991) used a va-
riety of reward levels in a study on mallard ducks
and found that a reward of US$100 in 1990 was
necessary to attain 100% reporting of the high-
reward tags. The necessary level of reward likely
varies by species, location, and monetary inflation.

The assumption that angler behavior does not
change in response to the high-reward tagging
study might also be violated. For example, fish-
ermen who become aware of the reward program
might start returning standard tags at higher rates
than normal because they are influenced by the
publicity. The high-reward tagging method has
been studied in detail by Pollock et al. (2001), who
give many practical recommendations for its use.

If the tag reporting rate remains constant over
time (the usual assumption), then recoveries need
not be restricted to the first year to be incorporated
into the model. Equation l does not specify units
involving time and is thus dimensionless. There-
fore, if 60% of the tags are reported, then the 60%
rate applies to tags recovered within half a year,
1 year, 2 years, and so on. The key is that fish
tagged with standard and high-reward tags expe-
rience the same mortality rate, so that their relative
abundance stays constant over time.

Multiple-Component Fisheries with a 100%
Reporting Rate for One Component

The multiple-component fishery method with a
100% reporting rate in one component is similar
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TABLE 1.—Recovery probabilities for high-reward and
standard tags in a high-reward tagging study. The symbols
Ni and Ni* represent the numbers of standard and high-
reward tags, respectively, released in year i; lt and lr are
the reporting rates for standard and high-reward tags in
year i; Si is the annual survival rate; and ui is the exploi-
tation rate in year i.

Year of
tagging

Number
tagged

Year of tagging

1 2 3

1

2

3

N1*
N1
N2*
N2
N3*
N3

u1lr
u1lt

S1u2lr
S1u2lt
u2lr
u2lt

S1S2u3lr
S1S2u3lt
S2u3lr
S2u3lt
u3lr
u3lt

to the high-reward tagging method. For simplicity,
we will examine the case of a boat-based fishery
with two components, as follows: (1) boats with
observers, where all tags are recovered, and (2)
boats without observers, where recovery of tags
depends on fishers’ cooperation. The relative catch
between the components must be either known or
estimable. The expected ratio of tagged fish caught
by the observer component to tagged fish caught
by the nonobserver component is assumed to be
equal to the expected ratio of total catch by com-
ponent type (thorough mixing of standard and
high-reward tags is assumed). If the proportion of
the total catch caught by boats with observers is
do and the proportion caught by boats without ob-
servers is 1 2 do, then the ratio of tagged fish
caught by boats with observers to tagged fished
caught by boats without observers can be esti-
mated by the overall catch ratio, do/(1 2 do). Let
Ro be the number of tags returned by boats with
observers and Rn the number of tags returned by
boats without observers. Then, similar to the high-
reward tag model, the tag reporting rate in the
boats without observers can be estimated as fol-
lows for recoveries from one tagged cohort:

l̂ 5 [R /(1 2 d )]/(R /d ) 5 R d /R (1 2 d ).n o o o n o o o

Several additional assumptions are needed for
the multiple-component method, including: all
tags are recovered from boats with observers on
board; tags are assumed to be well mixed, such
that tag returns by component reflect catch by com-
ponent; and the catch data for each fishery com-
ponent are accurate. These assumptions could be
violated in practice. Some tags may still go un-
reported even when observers are on board. In
some fisheries, if observers are placed on boats
nonrandomly and if tagging effort is spatially het-
erogeneous, then tag return rates by component
might differ greatly from catch rates by compo-
nent. Clearly, observers must be placed randomly
among the fishing boats for this method to work.
In addition, in some fisheries, catch may be either
underreported or reported differentially by com-
ponent. The multiple-component fishery method
was first used by Paulik (1961) and then by Kimura
(1976). Hearn et al. (1999) and Pollock et al.
(2002) generalized the method to multiple age-
classes and applied it to southern bluefin tuna
Thunnus maccoyii tagging data. A reasonable ap-
proach in practice might be to combine the two
methods to estimate tag reporting rate in a more
robust manner than is possible with either method

alone. We explore this further in the next section
using simulation.

Specification of Models

Table 1 shows the cell probabilities for the high-
reward tagging model in a 3-year study. Each year,
two groups are released: fish with standard tags
and fish with high-reward tags. The tag reporting
rate for high-reward tags is lr and that for standard
tags is lt. These rates are assumed not to vary by
year. Typically, lr is assumed to be 1.0.

Table 2 shows the cell probabilities for the two-
component fishery model. One tagged cohort is
released each year. However, within each cohort,
there are two rows of recovery cells because re-
coveries are tracked separately by component. The
tag reporting rate for the fishery component with
observers is lo, and the tag reporting rate for the
nonobserver component is ln. Typically, lo is as-
sumed to be 1.0. The cell probabilities parallel
those of the high-reward tags, except that now they
also include the probability of being caught by
boats with observers (do) or by boats without ob-
servers (1—do). The model has the additional ran-
dom variables of catch for each component. Con-
ditional on the total catch, the catch in each com-
ponent can be considered binomial for each year,
with the first year distributed as B(C1, d1), the sec-
ond year as B(C2, d2), and the third year as B(C3,
d3). Here, B represents the binomial distribution.
In the model, Ci represents the total number of fish
caught in year i. The overall likelihood is created
by multiplying the three independent binomial
catch likelihoods by the three independent tagged-
cohort multinomial likelihoods. We emphasize that
the exact value of Ci is assumed known, whereas
in some fisheries Ci may have to be estimated. If
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TABLE 2.—Recovery probabilities for a two-component fishery where one component has observers (ob) and one
component has no observers (no-ob). The symbols lo and ln are the tag reporting rates in the components with and
without observers, di is the fraction of the catch harvested by the component with observers in year i, 1 2 di is the
fraction of the catch harvested by the component without observers, and Ci is the total catch in year i. Other symbols
are defined in Table 1.

Year of
tagging Number

Year of tagging

1 2 3 Component

Tagged

1

2

3

N1

N2

N3

u1d1lo
u1 (1 2 d1)ln

S1u2lo
S1u2(1 2 d2)ln
u2d2lo
u2(1 2 d2)ln

S1S2u3d3lo
S1S2u3(1 2 d3)ln
S2u3d3lo
S2u3(1 2 d3)ln
u3d3lo
u3(1 2 d3)ln

ob
no-ob

ob
no-ob

ob
no-ob

Catch

1

2

3

C1

C2

C3

d1
(1 2 d1)

d2
(1 2 d2)

d3
(1 2 d3)

ob
no-ob

ob
no-ob

ob
no-ob

TABLE 3.—Recovery probabilities for the combined high-reward and two-component fishery. Symbols introduced in
this table are as follows: lot 5 tag reporting rate for standard tags in the component with observers; lnt 5 reporting
rate for standard tags in the component without observers; lor 5 reporting rate for high-reward tags in the component
with observers; and lnr 5 reporting rate of high-reward tags in the component without observers. Other symbols are
defined in Tables 1 and 2.

Year of
tagging Number

Year of tagging

1 2 3 Component

Standard tags

1

2

3

N1

N2

N3

u1d1lot
u1(1 2 d1)lnt

S1u2d2lot
S1u2(1 2 d2)lnt
u2d2lot
u2(1 2 d2)lnt

S1S2u3d3lot
S1S2u3(1 2 d3)lnt
S2u3d3lot
S2u3(1 2 d3)lnt
u3d3lot
u3(1 2 d3)lnt

ob
no-ob

ob
no-ob

ob
no-ob

High-reward tags

1

2

3

N1*

N2*

N3*

u1d1lor
u1(1 2d1)lnr

S1u2d2lor
S1u2(1 2 d2)lnr
u2d2lor
u2(1 2 d2)lnr

S1S2u3d3lor
S1S2u3 (1 2 d3)lnr
S2u3d3l0r
S2u3(1 2 d3)lnr
u3d3lor
u3(1 2 d3)lnr

ob
no-ob

ob
no-ob

ob
no-ob

Catch

1

2

3

C1

C2

C3

d1
(1 2 d1)

d2
(1 2 d2)

d3
(1 2 d3)

ob
no-ob

ob
no-ob

ob
no-ob

total catch is estimated, then additional variation
in the model will be unaccounted for.

Table 3 shows the cell probabilities for the com-
bined high-reward and two-component fishery
model. The upper part of the table shows the re-

covery probabilities for standard tags in each com-
ponent, the middle part of the table shows the re-
covery probabilities for high-reward tags in each
component, and the bottom part of the table shows
the catch probabilities by component. The tag re-
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TABLE 4.—Simulation results for the combined model with the reporting rate for high-reward tags with observers
(lor) 5 1.0 and various values for the reporting rate for high-reward tags without observers (lnr) assumed to be equal
to the reporting rate for standard tags with observers (lot). Data generated are based on the following assumptions:
exploitation rate (u) 5 0.4, survival 5 0.5, and lnt 5 0.6. All reporting rates except lor were estimated in the model.
For each scenario, the first row presents the median with the 5th and 95th percentiles in parentheses; the second row
presents the mean with the standard error in parentheses. The proportional biases based on the median and the mean
are also presented.

Scenario
(lnr 5 lot) û Bias nrl̂ Bias ntl̂ Bias otl̂ Bias

1.0

0.95

0.42 (0.38–0.56)
0.44 (0.059)
0.41 (0.36–0.56)
0.43 (0.065)

0.05
0.10
0.03
0.07

0.94 (0.68–1.00)
0.91 (0.109)
0.92 (0.66–1.00)
0.89 (0.118)

20.06
20.18
20.03
20.06

0.57 (0.42–0.63)
0.55 (0.065)
0.58 (0.43–0.66)
0.57 (0.073)

20.05
20.08
20.04
20.05

0.94 (0.70–1.00)
0.91 (0.103)
0.92 (0.68–1.00)
0.89 (0.112)

20.06
20.18
20.04
20.06

0.9

0.8

0.40 (0.35–0.57)
0.42 (0.069)
0.39 (0.35–0.57)
0.42 (0.068)

0.00
0.05

20.02
0.05

0.90 (0.60–1.00)
0.87 (0.130)
0.81 (0.59–1.00)
0.80 (0.147)

0.00
20.03

0.01
0.00

0.60 (0.42–0.69)
0.58 (0.082)
0.61 (0.42–0.70)
0.60 (0.109)

0.00
20.03

0.02
0.00

0.89 (0.63–1.00)
0.87 (0.123)
0.81 (0.59–1.00)
0.80 (0.143)

20.01
20.03

0.01
0.00

porting rates by boats with observers are lot and
lor for standard and high-reward tags, respectively.
The tag reporting rates for the nonobserver com-
ponent are lnt and lnr for standard and high-reward
tags, respectively.

Simulation

Methods

We used maximum likelihood (ML) estimators
to evaluate the effect of errors in the assumption
of 100% reporting rate for boats with observers
and for high-reward tags. The SURVIV program
(White 1983) was designed to perform simulations
and give ML estimates of parameters in any mul-
tinomial model. In all our simulations, the ex-
ploitation rate was set at 0.4 for all 3 years. Sim-
ilarly, the survival rate was set at 0.5 for all 3
years. All simulation results were based on 1,000
repetitions, and all standard-tagged cohort sizes
were set at 1,000.

For the high-reward tagging simulations, the
high-reward-tagged cohort sizes were either 100
or 200 per year. The true high-reward tag reporting
rate was varied (1.0, 0.95, 0.9, or 0.8) within the
simulation. In each scenario, the standard tag re-
porting rate was set at 0.6. A constraint that the
high-reward tag reporting rate had to equal 1.0 was
placed on the model estimation solution in all sce-
narios.

For the two-component simulations, the observ-
er component was either 10% or 20% of the catch.
The observer tag reporting rate was varied (1.0,
0.95, 0.90, or 0.8). In each scenario, the nonob-
server tag reporting rate was set at 0.6. For all
scenarios, we placed the constraint on the model
solution that the observer tag reporting rate had to

equal 1.0. Our simulations did not include varia-
tion due to catch estimation.

In the combined method simulations, the high-
reward-tagged cohort size was 100, and the ob-
server component of the fishery had a 10% share
of the catch. In all simulations, the reporting rate
of standard tags in the nonobserver component
(lnt) was set at 0.6, the reporting rate of high-
reward tags in the observer component (lor) was
set at 1.0, and the solutions were constrained so
that the high-reward tag reporting rate in the ob-
server component always equaled 1.0. The high-
reward tag reporting rate assumption of 100%
(without observers) and the observer tag reporting
rate assumption of 100% (with standard tags) were
violated in various combinations. As with the two-
component method, our combined method simu-
lations did not include variation due to catch es-
timation.

Results of the simulations were calculated as the
mean estimate and standard error for each scenario
in Tables 4–8. However, in Table 4, we also present
the median estimate and the 5th and 95th percen-
tiles because some distributions were skewed to
the left when the true values of the parameters were
close to 1.0.

Results

High-Reward Tagging Model

Results based on 200 reward tags were similar
to those based on 100 reward tags in terms of bias,
so only the latter results are reported. Parameter
estimates were close to the actual values when the
high-reward tag reporting rate was equal to 1.0.
However, when the high-reward tag reporting rate
was not 1.0 but the model solution forced it to that
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TABLE 5.—Simulation results for the combined model when lor 5 1.0, and lnr (5 lot) assumes various values. The
reporting rates lnr and lnt were estimated in the model, and or and ot were fixed at 1.0. See the caption to Table 4l l
for additional details.

Scenario
(lnr 5 lot) û Bias nrl̂ Bias ntl̂ Bias

1.0
0.95
0.9
0.8

0.41 (0.028)
0.39 (0.026)
0.38 (0.025)
0.34 (0.025)

0.02
20.02
20.06
20.16

0.96 (0.055)
0.96 (0.058)
0.96 (0.061)
0.95 (0.068)

20.04
0.01
0.06
0.19

0.59 (0.042)
0.61 (0.043)
0.64 (0.046)
0.72 (0.057)

20.02
0.02
0.07
0.20

TABLE 6.—Simulation results for the combined model
when lor 5 1.0 and lnr (5 lot) assumes various values;
lnt was estimated and the other reporting rates were fixed
at 1.0 when the model was fitted.

Scenario
(lnr 5 lot) û Bias l̂nt Bias

1.0
0.95
0.9
0.8

0.42 (0.092)
0.39 (0.053)
0.36 (0.020)
0.33 (0.017)

0.06
20.03
20.09
20.19

0.58 (0.097)
0.62 (0.063)
0.66 (0.038)
0.74 (0.044)

20.04
0.04
0.10
0.23

TABLE 7.—Simulation results for the combined model
when lor 5 1.0 and lnr 5 (lot) assumes various values.
Only lnt was estimated in the model; lor) was fixed at 1.0
and lnr and lot at 0.9.

Scenario
(lnr 5 lot) û Bias ntl̂ Bias

1.0
0.95
0.9
0.8

0.44 (0.038)
0.42 (0.019)
0.40 (0.019)
0.36 (0.018)

0.10
0.05
0.00

20.10

0.55 (0.04)
0.57 (0.03)
0.60 (0.034)
0.67 (0.04)

20.09
20.05

0.00
0.12

value, there were increasingly negative biases in
the exploitation rates (about 25% for lr 5 0.95,
210% for lr 5 0.9, and 220% for lr 5 0.8) and
increasingly positive biases in the standard tag re-
porting rates (about 5% for lr 5 0.95, 11% for lr

5 0.9, and 25% for lr 5 0.8).

Two-Component Fishery Model

The results for 10% and 20% shares of the catch
in the observer component were similar in terms
of bias, so only those for the 10% share are re-
ported. Parameter estimates were close to the ac-
tual values when the observer tag reporting rate
was equal to 1.0. However, when the actual ob-
server tag reporting rates were not equal to 1.0 but
the model solution forced it to that value, exploi-
tation rates had increasingly negative biases and
the nonobserver tag reporting rates had increas-
ingly positive biases. The two-component fishery
simulation results were identical in magnitude to
simulation results for the high-reward tagging
model.

High-Reward Tagging Model Combined with the
Two-Component Fishery Model

In our models, we considered the bias in esti-
mates of exploitation rates and various reporting
rates; however, survival estimates were not biased
for any of the scenarios because survival estima-
tion does not require knowledge of the tag re-
porting rate. The results from several combined
simulation scenarios are presented in Table 4, and

the only constraint on the solution was that the
reward tag reporting rate in the observer compo-
nent equal 1.0 (lor 5 1.0). Thus, all other param-
eters were estimated. The first scenario presented
in Table 4 is where lnr 5 lot 5 1.0 (i.e., the as-
sumptions were not violated). In this case, the ex-
ploitation rate estimate was positively biased by
about 10%, and all the tag reporting rate estimates
were negatively biased by about 8–18%. Though
the negative bias in tag reporting rates may at first
appear odd because no constraints were placed on
the solutions, there is a simple explanation. When
the parameters were estimated from the simulation
data, parameter values near the extreme (i.e., 1.0)
had variability in the estimates, but clearly the
estimates could never be greater than 1.0. Thus,
many replications will produce estimates of the
parameters that are slightly below 1.0, but none
will produce estimates that are above 1.0. The dis-
tribution of the 1,000 replications was therefore
negatively skewed, which is why we report me-
dians and 5th and 95th percentiles as well as means
and standard errors. The median bias was 15%
for the exploitation rate and 26% for the reporting
rate estimates. Maximum likelihood estimators are
asymptotically unbiased and consistent, which
means that, as all sample sizes become large, the
variance and the bias shrink if the fitted model is
correct.

The other scenarios in Table 4 show what hap-
pens when the 100% reporting rate assumptions
are violated. As the reporting rates move away
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TABLE 8.—Comparison of the three models in terms of mean estimated exploitation rate, with standard errors in
parentheses; proportional biases are also presented. For high-reward model scenarios, lr was set to 1.0 in fitting the
model. For two-component model scenarios, lo was set to 1.0, and for all combined-model scenarios, lor was set to
1.0. Additional constraints in fitting the models were as follows: lot 5 1.0*; lnr 5 lot 5 1.0**; and lnr 5 lot 5
0.9***. The cases in boldface type have the minimum bias.

Simulated conditions û Proportional bias

High-reward model, lr 5 1.0
Two-component model, lo 5 1.0
Combined model, lnr 5 lot 5 1.0
Combined model, lnr 5 lot 5 1.0*
Combined model, lnr 5 lot 5 1.0**

0.40 (0.023)
0.40 (0.041)
0.44 (0.059)
0.41 (0.028)
0.42 (0.092)

0.00
0.00
0.10
0.02
0.06

High-reward model, lr 5 0.95
Two-component model, lo 5 0.95
Combined model, lnr 5 lot 5 0.95
Combined model, lnr 5 lot 5 0.95*
Combined model, lnr 5 lot 5 0.95**

0.38 (0.021)
0.38 (0.040)
0.43 (0.065)
0.39 (0.026)
0.39 (0.053)

20.05
20.05

0.08
20.02
20.02

High-reward model, lr 5 0.9
Two-component model, lo 5 0.9
Combined model, lnr 5 lot 5 0.9
Combined model, lnr 5 lot 5 0.9*
Combined model, lnr 5 lot 5 0.9**
Combined model, lnr 5 lot 5 0.9****

0.36 (0.020)
0.36 (0.039)
0.42 (0.069)
0.38 (0.025)
0.36 (0.020)
0.40 (0.019)

20.10
20.10

0.05
20.06
20.09

0.00

High-reward model, lr 5 0.8
Two-component model, lo 5 0.8
Combined model, lnr 5 lot 5 0.8
Combined model, lnr 5 lot 5 0.8*
Combined model, lnr 5 lot 5 0.8**

0.32 (0.020)
0.32 (0.032)
0.41 (0.081)
0.34 (0.025)
0.33 (0.017)

20.20
20.20

0.02
20.15
20.18

from 1.0, thus solving the boundary problems, the
parameter estimates improve and biases decrease.
When lnr 5 lot 5 0.9 or 0.8, both the exploitation
rate and the tag reporting rate biases are very
small, in terms of median or mean bias. For the
combined method, the estimation relies exclusive-
ly on the high-reward tags recovered by the ob-
servers to determine the tag reporting rates.

The same scenarios from Table 4 are repeated
in Table 5, but in this case, the assumption of a
100% reporting rate in the observer component is
maintained for both standard and high-reward tags.
The estimation procedure forces lor 5 lot 5 1.0,
but it does not require lnr to equal 1.0. These sce-
narios again vary lnr and lot. The first scenario in
the table sets lnr 5 lot 5 1.0. Other scenarios
gradually reduce these reporting rates. The best
results are achieved when lnr 5 lot 5 1.0; in this
case, lnt is only slightly biased (22%), and the
exploitation rate is positively biased (2%). As the
two reporting rates lnr and lot are reduced to 0.8,
the exploitation rate bias becomes large (216%),
and the positive bias in lnt is 20%. There are also
increasing positive biases in lnr.

Table 6 repeats the same scenarios as Tables 4
and 5, but with the restriction that all high-reward
tags are returned. Therefore, the solutions force
lor 5 lot 5 lnr 5 1.0. The first scenario in the

table shows what happens when the assumptions
are not violated, such that lnr 5 lot 5 1.0. Thus,
the solution is forced to estimate these parameters
correctly. The exploitation rate has a slight posi-
tive bias (6%), and the lnt estimate has a slight
negative bias (24%). As the assumption that lnr

5 lot 5 1.0 is violated more and more, the ex-
ploitation rate becomes increasingly negatively bi-
ased, with a bias of 219% at lnr 5 lot 5 0.8. The
estimate of lnt has an increasingly positive bias of
about the same magnitude as that of the exploi-
tation rate.

Although unrealistic in practice, Table 7 shows
what happens when the constraint lnr 5 lot 5 0.9
is forced on the solution. The four scenarios show
the results when the true lnr and lot actually equal
0.9, as well as the results when the values were
varied slightly in either direction. When the true
lnr 5 lot 5 0.9, there are virtually no biases in
the estimates. When the true lnr 5 lot 5 1.0, there
is a positive bias in the exploitation rate of about
10% and a negative bias in the lnt estimate of about
9%. When the true lnr 5 lot 5 0.95, there is a
positive bias in the exploitation rate of about 5%,
and when the true lnr 5 lot 5 0.8, there is a neg-
ative bias of about 10%. Estimates of lnt have
biases similar to those of the exploitation rate but
in the opposite direction.
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Comparison of the Three Models

Comparisons of the exploitation rate estimates
of all three models are shown in Table 8. The upper
quarter of the table shows the results when all but
the tag reporting parameter for standard tags in the
nonobserver component is in fact 1.0, a perfect
reporting rate. The high-reward tag model and the
two-component model are effectively unbiased.
The combined model estimates have small positive
biases.

The second quarter of Table 8 shows the results
when the true high-reward tag reporting rate is
0.95 in the high-reward model and the true ob-
server component reporting rate is 0.95 in the two-
component model. Similarly, both lnr and lot are
simulated as 0.95 in the combined model. In this
case, the exploitation rate estimates from the high-
reward and two-component models have negative
biases of about 5%. The combined model biases
range from 22% to 18%. When lot and lor are
constrained to equal 1.0, the bias is only 22%.
When lot, lnr, and lor are all constrained to equal
1.0, the bias is again only 22%, which is slightly
better than the high-reward or two-component
models.

The third quarter of Table 8 shows the results
when the true high-reward tag reporting rate is
0.90 in the high-reward model and the true ob-
server component reporting rate is 0.90 in the two-
component model. Similarly, both lnr and lot are
simulated as 0.90 in the combined model. In this
case, the high-reward and two-component models
have negative biases of about 10%. The combined
model biases range from 29% to 0%, so that the
combined model always outperformed the high-
reward and the two-component models.

The bottom quarter of Table 8 shows the results
when the true high-reward tag reporting rate is
0.80 in the high-reward model and the true ob-
server component reporting rate is 0.80 in the two-
component model. Similarly, both lnr and lot are
simulated as 0.80 in the combined model. In this
instance, the high-reward and two-component
models have negative biases of about 20%. Again,
the combined model always does at least as well
as the other two models, with biases ranging from
218% to 12%. The combined model does best
when the number of constraints (in this case, in-
correct) is minimized and only lor is forced to be
1.0.

Precision of the Various Estimators

When catch has to be estimated, the precision
will be worse than that given in Tables 4–8. The

relative precision (standard error divided by esti-
mate expressed as a percentage) of the exploitation
rate estimators in our simulations was less than
10% except for the most general model, where
three tag reporting rates had to be fit (Tables 4 and
8). Even then, the relative precision of the ex-
ploitation rate estimators was about 15%.

A common reporting rate estimated in all the
models was lnt, the reporting rate of standard tags
in the nonobserver component of the fishery. The
relative precision of this reporting rate estimator
improved from about 15% when all three tag re-
porting rates had to be estimated (Table 4) to 5–
10% when lnt was the only tag reporting rate es-
timated (Tables 6 and 7).

Both of the other tag reporting rates (lnr and lot)
had true values close to 1.0, and the relative pre-
cision of the reporting rates in Table 4 reached
almost 20%. In Table 5, where lot was specified
and lnr estimated, the relative precision of lnr es-
timates was 6–7%.

Discussion

For all of the models and scenarios, survival
estimates are essentially unbiased because they are
not dependent on knowing the tag reporting rate
(Brownie et al. 1985). Estimates of the exploitation
rate, fishing and natural mortality rates, and var-
ious reporting rates are essentially unbiased only
when the model assumptions are met. For the high-
reward tag and two-component models, doubling
the number of high-reward tags or the share of
catch in the observer component does not affect
the bias in any of the parameter estimates, but it
does reduce the variability of those estimates. Bias
results from specification errors in the model rather
than from sampling variability.

The combined model does not invariably pro-
duce improved estimates over the separate models.
When model assumptions are not violated (i.e., the
reporting rates of all high-reward tags and ob-
server component standard tags are 1.0) the com-
bined model performs slightly worse than the oth-
ers in terms of bias in estimating exploitation rates,
unless all three tag reporting parameters involving
a high-reward or observer are constrained to equal
1.0. However, the biases are not large. When the
reporting-rate assumptions are violated for high-
reward tags and observer component tags, the
combined model does much better than the others.
Constraining only the observer component re-
porting rate of high-reward tags to equal 1.0 in the
combined model produces the most consistently
accurate estimates of exploitation rate over all sce-
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narios. The combined model with this constraint
does worst in the scenario where nonobserver
high-reward tag reporting and observer standard
tag reporting rates both equal 1.0, producing a pos-
itive bias of 5%. However, the combined model
does much better in scenarios where nonobserver
high-reward tag reporting and observer standard
tag reporting rates are not equal to 1.0, and the
model has no bias when both reporting rates equal
0.9 (based on the medians in Table 4).

The combination of a high-reward tagging meth-
od with a two-component fishery method appears
to provide an improvement over existing methods,
especially when assumptions of perfect tag re-
porting rates are violated. For the combined ap-
proach, high-reward tags in the observer compo-
nent are assumed to have perfect reporting rates.
A key advantage of the combined approach is that
reporting rates can be estimated for high-reward
tags in the absence of observers and for standard
tags in the presence of observers, which allows
assessment of the validity of the assumptions re-
quired for the two separate methods of estimating
tag reporting rates. The design of tagging studies
should always focus on testing model assumptions
and using robust methods with weaker assump-
tions (Pollock et al. 2001).

In selecting an approach for tagging studies, the
cost of implementing the combined method rather
than the high-reward tagging or multiple-compo-
nent fishery method would need to be considered.
The extra money spent on the combined method
could instead be used to increase the reward level
for high-reward tags or to increase observer cov-
erage. One cannot escape the fact, however, that
each method used separately has assumptions that
are hard to verify, whereas the combined method
allows weaker assumptions about reporting rates
and allows testing of the standard assumptions of
the separate methods. Furthermore, the cost of es-
timating catch by component in multiple-compo-
nent fisheries may not be trivial.

In this paper, we emphasize use of high-reward
tagging with a two-component fishery that con-
tains observers in one component. We also briefly
considered a related situation (for which results
were not reported) of two components (e.g., dif-
ferent fleets) combined with high-reward tagging,
and we assumed different reporting rates of stan-
dard tags in the two components. With valid as-
sumptions of 100% reporting of high-reward tags
for both fleets, there was no loss in precision of
the natural and fishing mortality estimates when
we combined the data and estimated one overall

reporting rate for the whole fleet rather than sep-
arate reporting rates for each fleet. However, the
advantage of estimating parameters separately for
each fleet is that satisfaction of various model as-
sumptions can be checked. A high-reward tag re-
porting rate of 100% is only needed in one com-
ponent to estimate all parameters. By estimating
fleet-specific reporting rates, we obtain two esti-
mates of each parameter. Inconsistency between
the two estimates indicates violation of one or
more of the following assumptions: the tagged fish
are mixed in the general population; the reporting
rate of high-reward tags in each component is
100%; and the catch of one or more of the com-
ponents is correctly reported.

Another combined method of estimating re-
porting rates is to use planted tags in one com-
ponent of a multiple-component fishery in which
catch is known for each component (W. S. Hearn
and others, unpublished). We believe that other
combined methods of estimating the tag reporting
rate, such as adding planted tags to a high-reward
tagging program, would be very beneficial. The
possible combinations of methods are numerous,
and the choice of methods would often be deter-
mined by the practical experimental conditions.

In the present paper, we have only considered
fisheries where all tagged fish are assumed to have
been harvested before being reported. There can
be additional problems in fisheries with a catch-
and-release element. A fisher may decide to keep
and report a high-reward tagged fish, whereas he
might release a standard-tagged fish. Selective re-
tention of high-reward tagged fish would violate
the assumption that all fish have equal survival
irrespective of tag type. This situation might also
violate the assumption that the reporting rate of
standard tags is unchanged in the presence of high-
reward tagging. We plan to discuss tagging studies
in catch-and-release fisheries in a future paper.
Smith et al. (2000) also discuss this issue.

The relative precision of our estimates was very
reasonable, even in the most general models fitted
(Table 4). We assumed, for simplicity, that tag re-
porting rates were constant during the study. How-
ever, in practice, tag reporting rates are likely to
be time dependent, and this possibility should be
tested as part of any estimation procedure. Sim-
ulations with time-dependent reporting rates
would have similar biases but lower precision than
those presented here. Also, estimation of catch
would lower the precision of the estimates.
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