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Abstract: The Brownie models for tagging data allow one to estimate age- and year-specific total survival rates as well as tag

recovery rate parameters. The latter can provide estimates of exploitation rates if the tag reporting, tag shedding, and

tag-induced mortality rates can be estimated. A limitation of the models is that they do not allow for newly tagged animals to

have different survival rates than previously tagged animals because of lack of complete mixing. We develop a model that

allows for the animals to be incompletely mixed, or not fully recruited, into the population during the entire year in which they

are tagged. There is a penalty in terms of precision associated with the use of this model. To increase the precision, we also

developed a model for which it is assumed that animals become fully mixed (recruited) after a portion of the year has elapsed.

Sometimes, animals must be tagged after the fishing season has begun. In this case, newly tagged animals experience fishing

and natural mortality for only a fraction of the year. The partial-year non-mixing model can be modified to account for this

situation.

Résumé: Les modèles de Brownie pour les données de marquage permettent d’évaluer le taux de survie totale propre à un

âge et à une année ainsi que des paramètres du taux de récupération des marques. Ces derniers peuvent fournir des évaluations

du taux d’exploitation lorsqu’on peut estimer les taux de déclaration des marques, de perte des marques et de mortalité induite

par les marques. Le fait que dans ces modèles les sujets nouvellement marqués ne peuvent pas avoir des taux de survie

différents de ceux des animaux déjà marqués en raison d’un mélange incomplet constitue une limitation. Nous avons élaboré

un modèle qui permet un mélange incomplet des animaux, ou un recrutement incomplet, dans la population pendant toute

l’année au cours de laquelle ils ont été marqués. L’utilisation de ce modèle comporte un désavantage au niveau de la

précision. Afin d’accroître la précision, nous avons également élaboré un modèle dans le cadre duquel on suppose que les

poissons sont entièrement mélangés (recrutés) après un certain temps. Les poissons doivent être parfois marqués après le

début de la saison de pêche. Dans ce cas, ces poissons nouvellement marqués ne sont exposés à une mortalité par pêche et à

une mortalité naturelle que pendant une partie de l’année. Le modèle de non-mélange pendant une partie de l’année peut être

modifié pour prendre en compte cette situation.

[Traduit par la Rédaction]

Introduction

Brownie et al. (1978, 1985) developed simple, elegant and
generally robust models for data from multiyear tagging stud-
ies. These models allow one to estimate year-specific survival
rates and rates of tag recovery. The latter were originally
viewed as nuisance parameters, because they represented the
combined effects of tag-induced mortality, tag shedding, ex-
ploitation, and tag reporting. In recent years, it has been recog-
nized that tag-induced mortality and tag shedding could be
quantified by holding tagged animals in cages or pens. Also,
tag reporting rate could be estimated from planted tags, creel

or port sampling programs, or high-reward tagging studies.
Thus, it is possible to determine the exploitation rate from the
tag recovery rate (Conroy 1985; Conroy et al. 1989; Pollock
et al. 1991, 1994, 1995).

One limitation of the Brownie models, pointed out by
Youngs and Robson (1975), is that it is necessary to assume
that newly tagged animals have time to mix thoroughly among
the previously tagged animals before the fishing season begins
and that they are fully recruited. This can be difficult to achieve
in practice. Youngs and Robson developed a test for non-
mixing but were unable to remedy the problem in the context
of Brownie models.

Hoenig et al. (1998) reparameterized the Brownie models
in terms of instantaneous rates of fishing and natural mortality.
Here, we show that the instantaneous rates formulation makes
it possible to allow for non-mixing (and incomplete recruit-
ment) of newly tagged animals. We develop two kinds of mod-
els: those in which the newly tagged animals are mixed
through the population after 1 year and those in which the
animals are mixed after a fraction of the year has passed.

Instantaneous rates formulation of the
Brownie models

Consider a tagging study where animals are tagged at the start
of each year and animals are recaptured over a number of years

Can. J. Fish. Aquat. Sci. 55: 1477–1483 (1998)

Received January 22, 1997. Accepted June 6, 1997.
J13840

J.M. Hoenig1 and N.J. Barrowman. Department of Fisheries
and Oceans, P.O. Box 5667, St. John’s, NF A1C 5X1, Canada.
K.H. Pollock and E.N. Brooks.Biomathematics Program,
Department of Statistics, North Carolina State University,
Raleigh, NC 28795-8203, U.S.A.
W.S. Hearn and T. Polacheck.CSIRO Division of Fisheries,
G.P.O. Box 1538, Hobart, Tasmania 7001, Australia.

1 Author to whom all correspondence should be addressed.
Present address: Virginia Institute of Marine Science,
P.O. Box 1346, Gloucester Point, VA 23062, U.S.A.
e-mail: hoenig@vims.edu

1477

© 1998 NRC Canada

F97-258.CHP
Wed Aug 05 11:32:56 1998

Color profile: Disabled
Composite  Default screen



with the animals being killed upon recapture. Let Ni be the
number of animals tagged in year i for i = 1, 2,..., I, and let rij

be the number of animals tagged in year i and recaptured in
year j for j = i, i + 1, i + 2,..., J. The observed numbers of
recaptures rij are realizations of the random variables Rij whose
expected values are shown in Table 1 for a model in which the
instantaneous fishing mortality rate, Fj, is year-specific and the
instantaneous natural mortality rate, M, is constant over time.
In Table 1, φ is the probability an animal survives the tagging
process with the tag intact, λ is the tag reporting rate (prob-
ability the tag is reported given that a tagged fish is caught),
and uj(Fj,M) is the exploitation rate in year j. The expected
value of R11 can be interpreted as follows: of the N1 fish tagged
in year 1, the fraction φ of the fish will survive the tagging with
the tag in place; of these, the fraction u1(F1,M) will be caught,
with a fraction λ of these reported. The expected value of R12

has a similar interpretation: N1φ fish are available to be caught
at the start of year 1, of these the fraction exp(–F1 – M) sur-
vives the first year and is available to be caught in the second
year, and of these the fraction λu2(F2,M) is caught and reported
during the second year. Expected values for all cells in the
table can be constructed in like fashion.

The exploitation rate, uj (Fj,M), is a function of the fishing
and natural mortality rates. It depends on the relative timing
of the components of mortality. We will assume that the natu-
ral mortality rate occurs with constant intensity over the course
of a year. Suppose the fraction of the annual fishing effort in
each period k of year j is denoted by εjk, for k = 1, 2, ..., K. We
assume that the fraction of the fishing mortality occurring in
period k is equal to the fraction of the annual fishing effort
occurring in period k (see Hoenig et al. 1998). Let ∆tk be the
length of the kth period of the year expressed as a fraction of
the year. Then

(1) uj(Fj,M) = ∑ajk

k=1

K

bjkcjk

where ajk is the fraction of the population surviving to the
beginning of period k, with aj1 = 1 and

ajk = exp







−M∑

h=1

k−1

∆th − Fj∑
h=1

k−1

εjh







, k > 1

bjk is the fraction dying in period k

bjk = 1 – exp(–M∆tk – Fj εjk)

and cjk is the fraction of the deaths in period k due to fishing

cjk =
Fj εjk

Fj εjk + M∆tk

When fishing effort and hence fishing mortality are con-
stant over the course of a year (eq. 1) reduces to the familiar
relationship (Ricker 1975):

uj (Fj,M) =
Fj

Fj + M
(1 – exp(–Fj – M))

and when fishing occurs instantaneously at the start of the year
K = 1, ∆t1 = 0, εj1 = 1, and

uj (Fj) = 1 – exp(–Fj).

The right-hand side of eq. 1 can be substituted for uj (Fj,M)
in the expressions for the expected values. Then the models
for the tagging data are parameterized in terms of instantane-
ous rates of fishing and natural mortality, tag reporting rate,
and tag retention–survival (φ). Hoenig et al. (1998) discuss
how reporting rate and tag retention–survival can be estimated,
and they show how the likelihood function can be constructed
to obtain maximum likelihood estimates. The models dis-
cussed in this paper can be fitted using program SURVIV
(White 1983).

Models that allow for non-mixing

Non-mixing in the year of tagging
Now suppose that the newly tagged animals do not mix
throughout the tagged population immediately upon release.
Then, in general, the newly tagged animals would be expected
to experience a different fishing mortality rate than the pre-
viously tagged animals. In Table 2 we describe a model in
which this is the case.

The expression for the expected value of r11 indicates that
the newly tagged animals experience fishing mortality F∗

1.
Throughout this paper we use an asterisk to indicate parame-
ters referring to newly tagged animals that are not yet fully
mixed into the population. We make the assumption that the

Expected recoveries in year

Year 1 2 3

1 N1φλu1(F1,M) N1φλu2(F2,M)e−F
1
−M N1φλu3(F3,M)e−F

1
−F

2
−2M

2 — N2φλu2(F2,M) N2φλu3(F3,M)e−F
2
−M

3 — — N3φλu3(F3,M)

Note: Symbols are as follows: Ni, number tagged and released in year i;

Fj, instantaneous rate of fishing mortality in year j; M, instantaneous rate of

natural mortality; φ, probabiliity of surviving being tagged and retaining the

tag (in the short term); λ, tag reporting rate; uj (Fj,M), exploitation rate in

year j as defined by eq. 1 (note that uj is a function of Fj and M and depends

on the seasonal pattern of fishing).

Table 1.Instantaneous rates formulation for expected number of

tag recoveries in a multiyear tagging study.

Expected recoveries in year

Year 1 2 3

1 N1φλu1(F∗
1 ,M) N1φλu2(F2,M)e−F∗

1
−M N1φλu3(F3,M)e−F∗

1
−F

2
−2M

2 — N2φλu2(F∗
2 ,M) N2φλu3(F3,M)e−F∗

2
−M

3 — — N3φλu3(F∗
3 ,M)

Note: Symbols are as follows: Nj, number tagged and released in year j;

Fj, instantaneous rate of fishing mortality in year j for previously tagged

animals; F∗
j , instantaneous rate of fishing mortality in year j for newly

tagged animals; M, instantaneous rate of natural mortality; φ, probability of

surviving being tagged and retaining the tag (in the short term); λ, tag

reporting rate; uj (Fj,M), exploitation rate (for previously tagged animals) in

year j as defined by eq. 1 (note that uj is a function of Fj and M and depends

on the seasonal pattern of fishing); uj ( F∗
j ,M), exploitation rate for newly

tagged animals in year j.

Table 2.Instantaneous rates formulation for expected number of

tag recoveries in a multiyear tagging study when newly tagged

animals are not fully mixed into the population in the year of

tagging.
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relative timing of the fishing and natural mortality on the
newly tagged animals is the same as before. However, this is
not a critical assumption, because we are not interested in the
value of the fishing mortality on newly tagged animals (since
it does not reflect what is happening to the population at large),
and because the relative timing has a minor effect on the esti-
mates of mortality rates (see Hoenig et al. 1998).

The expected number of recaptures in year 2 from animals
tagged in year 1 depends in part on the fishing mortality expe-
rienced by the cohort in year 1 and also on the “normal” fishing
mortality, F2, experienced by fully mixed animals in year 2:

E[R12] = N1φλu2(F2,M)e−F∗
1
−M

In the above, exp(–F∗
1 – M) is the survival rate in year 1 of

newly tagged animals, while u2(F2,M) is the exploitation rate
in year 2 of animals tagged prior to year 2. Note that the recap-
ture of newly tagged animals in year 2 has expected value:

E[R22] = N2φλu2(F∗
2,M)

That is, these animals experience a different fishing mor-
tality rate (F∗

2) than the previously tagged animals (which ex-
perience rate F2).

The tag recoveries from the 2 years of tagging and 3 years
of recapture are modelled with six parameters: F∗

1, F∗
2, F2, F3,

M, and the product φλ. If the product φλ is known from exter-
nal information, then setting the observed recaptures (r11, r12,
r13, r22, r23) equal to their expected values provides five equa-
tions in five unknowns, which can be solved simultaneously
to obtain moment estimates of the parameters. If a fourth year
of recaptures is obtained then there are two more observations
(r14 and r24) but only one additional parameter (F4). In this
case, it is possible in theory to also estimate F4 and the product
φλ. With additional tag releases or years of recapture it is pos-
sible to estimate additional parameters, e.g., letting natural
mortality or the product φλ vary to some extent over time. It
is not possible, however, to estimate a separate fishing mortal-
ity rate and natural mortality rate for every year (excluding the
first year) even if the product φλ is known.

Although it is theoretically possible to estimate a wide va-
riety of parameters, in practice it is necessary to introduce
restrictions such as holding natural mortality constant to obtain
stable estimates (see section on simulation results).

Non-mixing during part of the year of tagging
From the expected values in Table 2, it is clear that the recap-
ture of newly tagged animals provides no information about
fishing mortality on previously tagged animals. Thus, the as-
sumption of a non-mixing model results in the loss of a great
deal of information. It is therefore of interest to see if some
information about fishing mortality rates for previously tagged
animals can be obtained from the recapture of newly tagged
animals. We do this by assuming that after a portion of the year
has passed the animals are fully mixed.

Suppose that fishing effort data are collected by period of
the year and, for the first w periods, the newly tagged animals
are not mixed into the population. Then for w periods the
newly tagged animals will experience an abnormal fishing
mortality rate and for K – w periods they will experience the
normal fishing mortality rate, i.e., the same rate experienced

by the previously tagged animals. The survival rate, S∗
j , of

newly tagged animals in year j can thus be expressed by

S∗
j = exp







−F∗

j ∑
k=1

w

∆tk − Fj ∑
k=w+1

K

εjk − M







where F∗
j now refers to the fishing mortality on newly tagged

animals during the first w periods of year j. (The summation
over ∆tk serves only to express F∗

j per year; the summation
over εjk applies only a fraction of the normal fishing mortality
to the newly tagged animals.) Similarly, the exploitation rate
for newly tagged animals in year j can be expressed as

(2) u∗
j (F∗

j ,Fj,M) = b∗
j c∗

j + ∑
k=w+1

K

a∗
jk bjkcjk

For the first part of the year, b∗
j is the fraction dying

b∗
j = 1 − exp







−(M + F∗

j ) ∑
k = 1

w

∆tk








and c∗
j is the fraction of the deaths due to fishing

c∗
j =

F∗
j

F∗
j + M

For the second part of the year (periods w + 1, 2, ..., K), the
fraction surviving to the beginning of period k is

a∗
jk =
















exp







−M ∑

h=1

k−1

∆th − F∗
j ∑

h=1

k−1

∆th







,

exp







−M ∑

h=1

k−1

∆th − F∗
j ∑

h=1

w

∆th − Fj ∑
h=w+1

k−1

εjh







,

k = w + 1

k > w + 1

This just adds up the natural mortality since the beginning of
the year, the abnormal fishing mortality F∗

j , and the portion of
the normal fishing mortality that has occurred up to the begin-
ning of the kth period.

In a competing risks model such as this, it is assumed im-
plicitly that the ratio of fishing to natural mortality rate on
unmixed animals is constant over the first w periods and within
each period after that. Although this assumption is not likely
to be met in the first part of the year, the results are not sensitive
to the relative timing of the fishing and natural mortalities (see
Hoenig et al. 1998).

For the first year of tagging, the above expression for sur-
vival (S∗

1) introduces two parameters — F1 and F∗
1. However,

there is little basis for distinguishing between these parame-
ters. Therefore, we model the survival rate in the first year by

S∗
1 = exp (–F∗

1 – M)

to eliminate the parameter F1. Similarly, we can eliminate F1

from the expression for exploitation rate in the first year by
replacing eq. 2 with
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u∗
1(F∗

1,M) = ∑
k=1

K

a∗
1kb

∗
1kc

∗
1k

where the factors are the same as in eq. 1 except that F1 is
replaced by F∗

1. In other words, we treat the data from the first
year of the tagging study as if animals are not completely
mixed into the population until an entire year has elapsed. In
this case, we lose the ability to estimate F1, but our ability to
do this was poor anyway.

Tagging after the fishing season begins
An interesting situation is where animals are tagged after the
fishing season has begun. This is not really a non-mixing
model, but it can be handled in a fashion similar to that used
for non-mixing. Suppose all tagging is done in a short period
of time w periods after the season begins, and tagged animals
are released throughout the area inhabited by the stock. Then
it might be reasonable to assume that animals are thoroughly
mixed as soon as they are released. In this case, the fishing and
natural mortality rates on newly tagged animals would be 0
during the first w periods of the year and would be the same as
for previously tagged animals for all other periods of the year.
Thus, the annual survival rate for the newly tagged animals
would be

S∗
j = exp







−Fj ∑

k=w+1

K

εjk − M ∑
k=w+1

K

∆tk








, j = 1, 2, ..., I

and the exploitation rate would be

u∗
j (Fj,M) = ∑

k=w+1

K

a∗∗
jk bjkcjk, j = 1, 2, ..., I

with all symbols defined as for eq. 1 except a∗∗
j,w+1 = 1 and

a∗∗
jk = exp







−M ∑

h=w+1

k−1

∆th − Fj ∑
h=w+1

k−1

εjh








, k > w + 1.

Tests for non-mixing

We can use a likelihood ratio test to compare the fits of a model
assuming complete mixing to one allowing for non-mixing of
newly tagged animals. Let Λm and Λn be the values of the
likelihood functions for the models assuming complete mixing
and non-mixing, respectively, evaluated at the parameter esti-
mates. (The model assuming non-mixing is the “full” model
while the model assuming complete mixing is the “restricted”

model). Then, under the null hypothesis that the fully mixed
(restricted) model is true, the expression

−2 loge





Λm

Λn





has an asymptotic χ2 distribution with degrees of freedom ∆
equal to the difference in the number of parameters estimated
under the two models. The fully mixed model is rejected in
favor of the non-mixed model if the value of the test statistic
exceeds the critical value for a χ2 variable with ∆ degrees of
freedom.

Example: lake trout in Cayuga Lake

We consider 5 years of results from a tagging study described
by Youngs and Robson (1975) of lake trout (Salvelinus namay-
cush) in Cayuga Lake, New York (Table 3). Youngs (1974)
estimated the tag reporting rate, λ, from these data to be 18%.
(Actually, the estimate is of the product φλ.) Hoenig et al.
(1998) showed that the estimate was not stable. Therefore, for
illustrative purposes, we will assume that the product φλ is
known to be 0.18, and we will not try to estimate φλ. The
fishing season occurred during the last 6 months of the year,
assuming the year begins in October when the animals were
tagged (W.D. Youngs, personal communication).

We fitted two models to the data, one which allowed for
non-mixing throughout all of the year of tagging (non-mixed
model) and one which was based on the assumption that ani-
mals were fully mixed throughout all of the year of tagging
(fully mixed model). In both models, the fishing mortality was
allowed to vary from year to year, natural mortality was held
constant, fishing effort was assumed to be of constant intensity

No.

tagged

No. recaptured in year

Year 1 2 3 4 5

1960 1048 72 44 8 9 4

1961 844 — 74 30 20 7

1962 989 — — 54 48 13

1963 971 — — — 74 24

1964 863 — — — — 48

Table 3.Recapture data from a tagging study of lake trout

(S. namaycush) described by Youngs and Robson (1975).
Parameter Estimate SE

Fully mixed model

F1 0.58 0.08

F2 0.69 0.07

F3 0.42 0.05

F4 0.65 0.07

F5 0.40 0.07

M 0.11 0.04

Non-mixed model

F∗
1 0.59 0.08

F∗
2 0.64 0.09

F∗
3 0.41 0.07

F∗
4 0.63 0.11

F∗
5 0.41 0.08

F2 0.82 0.18

F3 0.45 0.10

F4 0.68 0.16

F5 0.40 0.14

M 0.11 0.05

Note: The fully mixed model assumes newly tagged

animals are fully mixed into the population. Negative log

likelihood = 2101.1; χ2 goodness of fit statistic = 8.13

with 9 df, p = 0.52. The non-mixed model assumes a lack

of mixing in the year of tagging. Negative log

likelihood = 2100.3; χ2 statistic = 6.54 with 5 df, p = 0.26.

Table 4.Two model fits to the data in Table 3.
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during months 7 to 12 of the year, and the product φλ was
fixed at 0.18.

Both models fit the data well judging by the χ2 goodness of
fit statistics. The estimates from the two models were very
similar (Table 4). Both models provided estimates of M of
around 0.11⋅year–1 and both models indicated that the fishing
mortality rates were quite high. The estimated standard errors
for the non-mixed model were noticeably higher than for the
fully mixed model.

To see how the models might perform in a case where non-
mixing is a problem, we modified the data set to simulate a
non-mixing scenario. The numbers of recaptures along the
main diagonal of the recapture matrix were multiplied by two-
thirds to simulate newly tagged animals having an exploitation
rate two-thirds that of previously tagged animals. This meant
that the number of recaptures in subsequent years had to be
adjusted upwards to account for the higher survival rate in the
year of tagging. This adjustment was accomplished as follows.
The natural mortality rate and fishing mortality rates estimated
from the original data (assuming a fully mixed population)
were used to calculate the exploitation rate in the year of tag-
ging for each cohort. We then searched iteratively for the fish-
ing mortality rate F* that would result in the exploitation rate
being reduced to two-thirds of the original value. Every entry
in a row to the right of the cell for newly tagged animals was
then multiplied by the ratio of the survival rates (new:old),
i.e., by exp(Fi – F∗

i ) where Fi is the fishing mortality that oc-
curred on the newly tagged animals from cohort i (in year i)
and F∗

i is the fishing mortality that would have resulted in
two-thirds the exploitation rate. The results were rounded to
the nearest whole number (Table 5).

The fit of the fully mixed model to the data modified to
reflect non-mixing was extremely poor (Table 6). The chi-
square goodness of fit statistic was highly significant suggest-
ing the model was not appropriate, and there was a clear
pattern to the residuals: the residuals were all negative on the
main diagonal and positive immediately to the right of the
main diagonal. The χ2 statistic suggests the non-mixed model
fit well, and there was no obvious pattern to the residuals (Ta-
ble 6). The estimated fishing mortality rates for previously
tagged animals, and the estimated natural mortality rate, were
similar to those obtained when the mixing model was fitted to
the original data. Thus, it appears that the non-mixed model
successfully handled the non-mixing situation.

Simulation studies

We conducted a simulation study of a tagging program with
3 years of tagging and 3 years of recaptures to see how well
models assuming complete mixing and assuming non-mixing
in the first year performed under a variety of situations. In
particular, we wished to see how great is the penalty for having
to assume a non-mixed model. This is important inasmuch as
the extent of non-mixing problems may be controlled by the
choice of time for tagging.

We simulated the following conditions:
(1) a type I (pulse) or type II (continuous) fishery;
(2) number tagged per year was 500 or 1000;
(3) φ = 1 and reporting rate (λ) was 1.0 or 0.50, assumed

known;
(4) fishing mortality for fully mixed animals was constant at

either F = 0.2⋅year–1 or F = 0.4⋅year–1;
(5) natural mortality rate was constant at either 0.2⋅year–1 or

0.4⋅year–1; and
(6) fishing mortality on newly tagged animals (F*) was either

(i) the same as for previously tagged animals, (ii) 0.1 when
F = 0.2, or (iii) 0.3 when F = 0.4.

We fitted models that either assumed constant fishing and
natural mortality rates or just constant natural mortality. We
fitted non-mixed models to data generated with non-mixing,
and we fitted fully mixed models to data generated as fully
mixed.

For each set of conditions, we generated 1000 data sets.
Results for each estimated parameter were summarized by
computing the bias and the relative standard error. The bias is
defined to be the average of the 1000 estimates minus the true
value of the parameter. For a parameter θ, estimated by θ̂, the
bias is bias(θ̂) = θ− – θ, where θ− is the average of the

No.

tagged

No. recaptured in year

Year 1 2 3 4 5

1960 1048 48 55 10 11 5

1961 844 — 49 39 26 9

1962 989 — — 36 56 15

1963 971 — — — 49 31

1964 863 — — — — 32

Note: Recaptures of newly tagged animals (along the main diagonal)

were reduced by one-third to simulate an exploitation rate on newly tagged

animals that is two-thirds that of previously tagged animals. Recaptures in

subsequent years were increased to reflect the higher survival of animals in

their year of tagging (see text for details).

Table 5.Tagging data from Table 3 modified to simulate lack of

mixing in the year of tagging.
Parameter Estimate SE

Fully mixed model

F1 0.33 0.05

F2 0.47 0.05

F3 0.29 0.04

F4 0.42 0.06

F5 0.26 0.05

M 0.05 0.05

Non-mixed model

F∗
1 0.36 0.06

F∗
2 0.38 0.06

F∗
3 0.25 0.05

F∗
4 0.37 0.07

F∗
5 0.25 0.06

F2 0.82 0.14

F3 0.46 0.08

F4 0.69 0.16

F5 0.41 0.13

M 0.12 0.05

Note: Data were modified from Table 3 to represent

an exploitation rate on newly tagged animals that is

two-thirds that of previously tagged animals. For the

fully mixed model, negative log likelihood = 1985.3; χ2

goodness of fit = 34.45, 9 df, p < 0.0001. For the

non-mixed model, negative log likelihood = 1972.7;

χ2 = 7.62, 5 df, p = 0.18.

Table 6.Model fits to the data in Table 5.
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1000 estimates. The relative standard error is defined to be the
standard error of θ̂ divided by θ. It is computed as

Relative SE (θ̂) =









|
∑
i=1

1000

(θ̂i − θ−)2

999









|










1/2

θ
where θ̂i is the parameter estimate for the ith simulated data set.

In all cases, the biases were small so we restricted our at-
tention to the relative standard errors. Results for the pulse
fishery case with N = 1000 animals tagged per year and φλ
= 100% are shown in Table 7. Qualitatively, the results in this
table are the same as for all other simulated conditions: there
is a significant penalty for having to assume a non-mixed
model. Typically, the standard error for a parameter estimated
under a non-mixed model is greater than that for the corre-
sponding parameter under a fully mixed model by a factor of
two to three. The effect of halving the number of animals
tagged is approximately the same as halving the reporting rate.
Both serve to reduce the expected number of tag returns and
to increase the relative standard errors by approximately 50%.
If a continuous (type II) fishery is simulated, the estimated
fishing mortalities have slightly higher relative standard errors,
and the estimated natural mortality rate(s) has (have) slightly
lower relative standard error(s), than if a pulse (type I) fishery
is simulated; however, these differences are so small as to be
of little practical significance.

Discussion

It is reasonable to assume that the lake trout data considered in
the example represent a case where the newly tagged animals
are fully mixed into the population when the fishery begins
each year. This is because tagging takes place approximately

6 months before the fishery begins. Analysis of the data re-
veals that a model based on the assumption of complete mixing
fits the data very well. Fitting a non-mixed model to these data
results in similar estimates to those obtained under the fully
mixed model. However, the standard errors are noticeably
larger for the non-mixed model.

When we modified the data to simulate a non-mixed situ-
ation with abnormally low fishing mortality on the newly
tagged animals, the model assuming full mixing performed
extremely poorly (low χ2 goodness of fit statistic, pattern to
the residuals, and estimated mortality rates substantially dif-
ferent than those estimated from the original data). In contrast,
the non-mixed model performed very well. The model fit the
data well judging by the χ2 statistic and the lack of pattern to
the residuals. Furthermore, the estimated natural mortality
rates and the fishing mortality rates on previously tagged ani-
mals were close to those estimated from the original data.

The simulation results confirm that there is a substantial
penalty for having to use a non-mixed model. Insofar as pos-
sible, the person designing a tagging program should endeavor
to minimize the non-mixing problem by choice of suitable
times and locations for the tagging. Apart from that, the op-
tions for dealing with non-mixing are to increase the number
of recaptures by increasing the number of animals tagged, in-
crease the number of recaptures by increasing the tag reporting
rate (e.g., by increasing the reward for returning a tag), or use
a model that assumes the period of non-mixing lasts for less
than a whole year.

This is the first paper to propose a solution to the non-
mixing problem. Brownie et al. (1978, 1985) proposed a
model (model 0), which allows for newly tagged animals to
have a different tag reporting rate than previously tagged ani-
mals but the same exploitation rate and survival rate. They
pointed out that if newly tagged animals have a different ex-
ploitation rate (and hence different survival rate) than pre-
viously tagged animals, the model would be indistinguishable

F = 0.2 F = 0.4

M = 0.2 M = 0.4 M = 0.2 M = 0.4

Parameter

F* = F,

mixed

F* = 0.1,

non-mixed

F* = F,

mixed

F* = 0.1,

non-mixed

F* = F,

mixed

F* = 0.3,

non-mixed

F* = F,

mixed

F* = 0.3,

non-mixed

Year-specific mortality assumed
F1

∗ — 10.19 — 10.19 — 6.19 — 6.19

F2
∗ — 10.15 — 10.14 — 6.18 — 6.18

F3
∗ — 10.20 — 10.20 — 6.20 — 6.20

F1 7.40 — 7.40 — 5.50 — 5.50 —

F2 6.10 14.47 6.31 16.89 4.67 11.02 4.81 12.94

F3 6.59 18.66 6.72 21.65 4.99 14.44 5.10 17.04

M 24.84 52.65 14.15 31.66 18.00 35.61 10.62 22.03

Constant mortality assumed
F* — 5.88 — 5.88 — 3.57 — 3.57

F 4.10 14.45 4.15 16.88 3.06 10.95 3.09 12.90

M 22.50 46.59 13.08 28.26 16.67 31.63 10.00 19.61

Note: Animals were tagged for 3 years and recaptured for 3 years. Mortality rates were held constant over time. Estimates were made separately under two

assumptions, either that (i) natural mortality is constant over time but fishing mortalities vary over time (top), or (ii) mortality rates are constant over time

(bottom). In half of the simulations, newly tagged animals have the same fishing mortality as previously tagged animals while, in the other half, the fishing

mortality on newly tagged animals is less than that on previously tagged ones. Non-mixed models were fitted to data sets in which newly and previously tagged

animals had different mortality rates. Type 1 (pulse) fishery (N =1000 tagged/year; φλ= 100%).

Table 7.Results of simulations to determine relative standard errors (%) of estimated mortality rates.
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from their model 0. However, the parameters that can be esti-
mated with model 0 do not include the annual survival rates.
That is, the survival rates are confounded with the tag recovery
rate parameters so that one can only estimate products of pa-
rameters that are not interesting. Our models allow one to es-
timate fishing and natural mortality rate and thus annual
survival rate.

It appears feasible, if expensive, to deal with non-mixing.
Further analytical efforts in this area may result in further
gains. For example, Hearn et al. (1998) recently described a
tagging study design in which animals are tagged before and
after the fishery. This provides direct estimates of natural mor-
tality that can be compared with the natural mortality estimated
from the kind of data considered here; significant non-mixing
would cause a discrepancy in the estimates.

In this paper, we consider the case where there is one count
of recaptures per cohort per year. In some cases, it may be
possible to apportion the total recaptures from a cohort to
subannual periods. For example, it may be possible to deter-
mine how many of the recaptures occurred in the first half of
the year and how many in the second half by using follow-up
interviews of the fishers. This would provide a class of models
intermediate between the Brownie-like models and exact time
of recapture models (see Hearn 1986; Hearn et al. 1987). The
likelihood would still be multinomial, but there would be two
cells per year. As before, one would determine an expression
for the expected value for each cell of the recovery matrix and
raise the expected value to the observed number in the cell. In
addition to increasing the precision of the estimates, this type
of model would also enable one to estimate the fishing mor-
tality (F1) in the first year of the study.
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