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ARTICLE

Tagging Models for Estimating Survival Rates When Tag
Visibility Changes over Time: Partial-Year Tabulation
of Recaptures

Lynn Waterhouse1 and John M. Hoenig*
Virginia Institute of Marine Science, College of William and Mary, Post Office Box 1346,
Gloucester Point, Virginia 23062, USA

Abstract
Brownie tagging models are commonly used for estimating survival rates from multiyear tagging studies. The

basic model, model 1, assumes that all tags have the same recovery rate. An alternative, model 0, allows newly tagged
animals to have a different tag recovery rate than previously tagged animals. This feature might be necessary because
new tags are less fouled and more visible than previously applied tags and thus have a higher reporting rate. Model 0
accommodates the different recovery rates through the use of additional parameters, which leads to larger standard
errors than in model 1. Model 0′, a new model, also allows newly tagged animals to have a different tag recovery
rate than previously tagged ones. It makes use of a known fouling time (the time it takes for tags on newly tagged
animals to have the same visibility as tags on previously tagged animals) to divide the year into two parts. During the
first part of the year the tags on newly tagged animals are more visible than those on previously tagged ones, while
in the second part all tags have the same visibility. Dividing the year into parts and recording the recaptures in each
part avoids the failure of the assumption that the reporting rate is constant for all tagged animals, achieves greater
precision, and provides estimates of the survival rate at the end of the second year instead of at the end of the third
year (as in model 0). The superiority of model 0′ over models 0 and 1 is demonstrated for several cases using Monte
Carlo simulation. Simulations were based on the queen conch Strombus gigas fishery of the Turks and Caicos Islands,
British West Indies. For that fishery, if the tag reporting rate is altered by 25% or more by fouling, it is beneficial to
use model 0′ instead of model 1.

In multiyear tagging studies a sample of the population,
termed a cohort, is captured, tagged, and released at the start
of each of several years. Brownie et al. (1978, 1985) described
a suite of models that enable the user to estimate age- and year-
specific survival rates from tag recoveries that are tabulated by
year. Annual survival rate, represented by S, is defined as the
fraction of the population alive at the start of the year that is
still alive at the end of the year. Additionally, Brownie models
enable one to obtain estimates of the fraction of tagged animals
that are caught and reported, termed the tag recovery rate and
denoted by f .

*Corresponding author: hoenig@vims.edu
1Present address: Department of Statistics, Pennsylvania State University, 325 Thomas Building, University Park, Pennsylvania 16802–2111,

USA.
Received January 6, 2011; accepted October 6, 2011

The basic age-invariant and year-specific model described by
Seber (1970), Youngs and Robson (1975), and Brownie et al.
(1978, 1985) is known as model 1. Alternative models described
by Brownie et al. (1978, 1985) enable the user to impose year-
specific constraints on the parameters f and S and to allow
newly tagged animals to have a different tag recovery rate than
previously tagged animals. Today it is common to refer to all of
these models as Brownie models.

The assumptions of Brownie models are well documented
(e.g., Brownie et al. 1978, 1985; Pollock and Raveling 1982).
Those for model 1 include the following: (1) the tagged sample
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148 WATERHOUSE AND HOENIG

FIGURE 1. Blacklip abalone from Tasmania with three lightly fouled tags (left) and one highly fouled tag (right) (photos provided by David Tarbath, Tasmanian
Aquaculture and Fisheries Institute, University of Tasmania). The blue and white tags in the left photo are attached to the same respiratory pore of the shell. The
arrows indicate the positions of the tags.

is representative of the target population; (2) short-term tag loss
and tag-induced mortality (i.e., those occurring over a few days
immediately after tagging) are constant from year to year; (3)
there is no long-term tag loss (i.e., tag loss occurring over periods
of months to years); (4) long-term survival is not affected by
tagging or handling processes; (5) the fate of each tagged animal
is independent of that of other tagged animals; (6) all animals
within a tagged cohort experience the same S and f within a
time period (known as homogeneous survival and tag recovery
rates); and (7) the tag recovery rate, f , does not vary among
cohorts within a given year.

Various models have been proposed that allow for violations
of the assumptions of model 1. Here, we focus on a model
described by Brownie et al. (1978) known as model 0 that
allows for the violation of assumption 7, that is, newly tagged
cohorts are allowed to have different tag recovery rates than
previously tagged cohorts. Tagged cohorts might not be subject
to the same tag recovery rate during a time period if tags
become less visible over time due to factors such as tag fouling
(for an example of the fouling of tags on blacklip abalone
Haliotis rubra shells in Tasmania, see Figure 1).

The tag recovery rate f can be expressed as a product of its
components (Pollock et al. 1991; Hoenig et al. 1998a):

f = ϕλu, (1)

where ϕ is a composite factor representing the effective number
of tags released, here defined as a combination of the short-
term survival rate from tagging and the short-term probability
of tag retention; λ is the tag reporting rate, or the probability
that a tag will be reported if the fish is recaptured; and u is
the exploitation rate, or the expected fraction of the population
alive at the start of the year that dies due to harvesting during
the year. The tag reporting rate can be further thought of as a

combination of factors that affect the probability of a tag’s being
reported if the animal is recaptured, including the visibility of the
tag.

If the visibility of the tag is constant over time and does
not vary within cohorts, then visibility is of little interest except
inasmuch as low visibility may cause a low rate of tag returns. If
tag visibility changes with time at liberty, this will affect the tag
reporting rate differently among cohorts, and thus the tag recov-
ery rate, which introduces bias into the parameter estimates. In
a variety of tagging studies, tag fouling has been reported to be
prominent (Lowry and Suthers 1998; Tarbath 1999; Dicken et al.
2006; Verweij and Nagelkerken 2007). The use of antifouling
materials to prevent fouling on tags may alleviate the problem
of reduced tag visibility, but such materials could potentially
harm the tagged animal. Other studies have reported issues with
tag visibility over time. Tagging programs using visible implant
elastomer tags have reported diminishing tag visibility over time
as a result of thickening of the skin overlying the tags (Curtis
2006; Reeves and Buckmeier 2009). The problem of tag visi-
bility varying with time at liberty may be more prevalent than
discussed in the literature for a variety of reasons, including poor
communication between fishers and scientists and researchers’
not knowing how to incorporate the change of tag visibility into
their models and therefore assuming that it has no effect or their
not understanding the bias it may introduce into the parameter
estimates.

Brownie et al. (1978, 1985) introduced a model, model 0,
that can account for the tag recovery rate of new tags being
different from that of older tags for the first year each cohort is at
liberty. This model differs from model 1, which assumes that all
cohorts have the same tag recovery rate in a given year. Under
both models, all cohorts at liberty for more than 1 year have
the same tag reporting rate (within a given year), presumably
because they have the same tag visibility.
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SURVIVAL RATES WHEN TAG VISIBILITY CHANGES OVER TIME 149

If it takes new tags less than 1 year to have the same visibility
as those on previously tagged animals, better use can be made
of the data by partitioning the year into parts. The tag returns
can be tabulated by portions of the year that account for the
change in visibility. That is, in the first part of the year, new
tags are becoming fouled or are fouled; in the second part of
the year, all tags are fouled. We present such a model, model 0′,
and study its properties by Monte Carlo simulation. Model 0′

is compared with model 1 and model 0 to provide guidance as
to which model(s) should be applied based on the availability
of information on tag fouling. Additionally, the importance of
the degree to which tag visibility (and thus tag reporting) affects
model performance is evaluated.

BROWNIE MODELS

Model 1
We start with the basic year-specific model (model 1). The

data consist of an upper-triangular or trapezoidal array made up
of observed values of rij, which are the realizations of Rij, the
random variable representing the number of animals tagged in
year i (i = 1, 2, . . . , I) and recaptured in year j, ( j = i, . . . , J,
with J ≥ I). The expected recaptures of animals tagged in year
i and recaptured in year j is

E(Rij) =

⎧⎪⎨⎪⎩
Nifj , i = j

Nifj

(
j−1∏
k=i

Sk

)
, i < j ≤ J

, (2)

where the expression E(·) denotes the expected value of the
variable within the parentheses, Rij is as defined above, Ni is the
number tagged and released at the start of year i (i = 1, . . . ,
I), Sj is the fraction of the population alive at the start of year j
that is still alive at the end of year j ( j = 1, . . . , J–1), and fj is
the tag recovery rate in year j ( j = 1, . . . , J). Note that there
is an implicit category for all animals of a cohort that are never
seen again, denoted Yi. This can be expressed as

Yi = Ni −
J∑

j=i

rij. (3)

Brownie-type models can be expressed as the product of in-
dependent multinomial distributions of tag returns over time,
with each tagged cohort giving rise to a multinomial distribu-
tion. The general form of the likelihood function � for product
multinomial models can be expressed as

� ∝
I∏

i=1

⎛⎝ J∏
j=i

P
rij
ij

⎞⎠⎛⎝1 −
J∑

j=i

Pij

⎞⎠Yi

, (4)

where the symbol ∝ means “is proportional to,” Pij is the cell
probability of recovering a tagged animal in year j given that it

TABLE 1. Expected recaptures under Brownie model 0, where Ni is the num-
ber tagged and released at the start of year i (i = 1, . . . , 1[1 = 3]); Sj is the
fraction of the population alive at the start of year j that is still alive at the end
of year j ( j = 1, . . . , J–1 [J = 4]); fj is the expected fraction of the tagged
population at large at the start of year j that is caught and reported during year
j (j = 2, . . . , 4); and fi∗ is the expected fraction of the newly tagged animals
in year i that is caught and reported in year i (i = 1, 2, 3), with the asterisks
indicating that the fraction reported is different for the first year a cohort is at
liberty than for previously tagged cohorts, as the tags are still new and unfouled.

Expected number recaptured in year

Year Number tagged 1 2 3 4

1 N1 N1 f 1
∗ N1S1 f 2 N1S1S2 f 3 N1S1S2S3 f 4

2 N2 N2 f 2
∗ N2S2 f 3 N2S2S3 f 4

3 N3 N3 f 3
∗ N3S3 f 4

was tagged in year i, that is,

Pij = E(Rij)

Ni

, (5)

and the other symbols are as defined previously. For model 1,
the cell probabilities Pij are found by substituting equation (2)
into equation (5).

Model 0
We now consider model 0, which pertains to the case in which

the tag recovery rate in a given time period is different for the
first year a cohort is at liberty than it is for previously tagged
cohorts. For each cohort, the model (Table 1) incorporates an
additional parameter, fi∗, which is the tag recovery rate in year
i for newly tagged animals (the asterisk indicating that the frac-
tion reported is for a cohort in its first year at liberty). Allowing
the tag recovery rates to be different for the first year a cohort is
at liberty causes model 0 to have more parameters than model 1,
which leads to less precision in the parameter estimates. How-
ever, the unequal recovery rates for newly tagged and previously
tagged cohorts afford protection from bias due to model mis-
specification. Note that model 1 is a special case of model 0.

To estimate the survival rate in the first year, 3 years of tag
returns are needed instead of the 2 years needed for model 1.
If recoveries are made for J years, then for the cohort tagged
in year i there will be J–i–1 moment estimates of Si. For
example, for the cohort tagged in year 1, an estimate of S1 is not
possible in the second year (there will be three equations and
four unknowns). This can be seen by looking at the moment
estimates formed by the ratios of expectations (using R12 and
R22 compared with R13 and R23):

E (R12)

E (R22)
= S1f2

f ∗
2

(6a)

E (R13)

E (R23)
= S1S2f3

S2f3
= S1 (6b)

(assuming equal numbers are tagged each year).
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150 WATERHOUSE AND HOENIG

TABLE 2. Observed and expected recaptures under the new model 0′. The year is divided into two parts, (a) and (b). The observations consist of counts, rijk,
that are the observed numbers of recaptures of animals tagged in year i that were recaptured in part k of year j. In the expected values, Ni is the number tagged and
released at the start of year i, Sj is the fraction of the population alive at the start of year j that is still alive at the end of year j, Sjk is the fraction of the population
alive at the start of year j that is still alive at the end of part k of year j, fjk is the fraction of the tagged population at large at the start of year j that is caught and
reported during part k of year j, and fja∗ is the fraction of the newly tagged animals that is caught and reported in part (a) of year j, with the asterisk indicating that
the fraction reported is different for part (a) of the first year a cohort is at liberty; i = 1, . . . , 3; j = 1, . . . , 4; and k ∈{a,b}.

Recaptures in time period

Year Number tagged 1a 1b 2a 2b 3a 3b 4a 4b

Observed recaptures
1 N1 r11a r11b r12a r12b r13a r13b r14a r14b

2 N2 r22a r22b r23a r23b r24a r24b

3 N3 r33a r33b r34a r34b

Expected recaptures
1 N1 N1f 1a

∗ N1S1a f 1b N1S1 f 2a N1S1S2a f 2b N1S1S2 f 3a N1S1S2S3a f 3b N1S1S2S3 f 4a N1S1S2S3S4a f 4b

2 N2 N2 f 2a
∗ N2S2a f 2b N2S2 f 3a N2S2S3a f 3b N2S2S3 f 4a N2S2S3S4a f 4b

3 N3 N3 f 3a
∗ N3S3a f 3b N3S3 f 4a N3S3S4a f 4b

In practice, maximum likelihood estimates are found by max-
imizing equation (4) with appropriate cell probabilities obtained
by substituting values in Table 1 for the values in equation (5).
As before, Yi is defined by equation 3.

NEW MODEL: MODEL 0′

The year can be divided into two parts. In the first part, part
(a), newly tagged cohorts have new and highly visible tags that
are becoming fouled and less visible; in the second part, part (b),
the tags are fouled and have the same visibility as fouled tags
on animals released in previous years. Dividing the year into
two parts in this manner allows flexibility in the actual manner
in which the tag fouling occurs since the division of the year
into parts (a) and (b) does not depend on specifying the fouling
process. The key is to make sure that the year is divided into
parts (a) and (b) so that the tags on released animals in part (b)
of the year during the first year at liberty have the same visibility
as those on animals that have been at liberty for more than a
year. The tag returns are tabulated separately for parts (a) and
(b) of the year (Table 2).

For previously tagged cohorts there is a tag recovery rate
parameter for each part of the year, namely, fja and fjb for parts
(a) and (b), respectively, of year j and a survival rate Sja for part
(a) of the year. Similar to model 0, model 0′ has an additional
parameter in the form of an fia∗ for the first part of the first
year that cohort i is at liberty. In the second part of the first
year a cohort is at liberty, the tag recovery rate is the same as
for previously tagged cohorts (i.e., there is no asterisk on the
recovery parameter; Table 2).

Because the year is divided into two parts, an estimate of sur-
vival can be made after two years; for example, for the survival
rate in the first year the ratio of expectations is:

E (R12b)

E (R22b)
= S1S2af2b

S2af2b

= S1. (7)

This is in contrast to the situation for model 0, where an estimate
can only be obtained after the end of the third year (equation
6b).

The likelihood is of the form

� ∝
I∏

i=1

⎛⎝ J∏
j=i

∏
k∈{a,b}

P
rijk
ijk

⎞⎠⎛⎝1 −
J∑

j=i

∑
k∈{a,b}

Pijk

⎞⎠Wi

, (8)

where Pijk is the cell probability of recovering a tagged animal
in part k of year j given that it was tagged in year i, that is,

Pijk = E(Rijk)

Ni

,

and the other parameters are as defined previously. The likeli-
hood is constructed as before using the cell probabilities from
Table 2 (bottom). The recapture cell representing the tagged
animals that are never seen again can be given by

Wi = Ni −
J∑

j=i

∑
k∈{a,b}

rijk, (9)

where rijk are the observed recaptures of animals tagged in year
i (i = 1, 2, . . . , I) and recaptured in part k (k ∈ {a, b}) of year
j ( j = i, . . . , J, with J ≥ I). Estimates for the parameters can
be found by maximizing equation (8).

MODEL EVALUATION BY SIMULATION
To evaluate the performance of model 0′, we used Monte

Carlo simulation to generate data repeatedly under models 1 (no
fouling), 0 (fouling that takes a year), and 0′ (fouling that takes
only part of the year) and then fit all three models to each data
set. The simulations consisted of 3 years of tagging data and 4
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SURVIVAL RATES WHEN TAG VISIBILITY CHANGES OVER TIME 151

full years of recapture data, that is, recaptures for periods 1a, 1b,
2a, 2b, 3a, 3b, 4a, and 4b for model 0′ and periods 1, 2, 3, and 4
for models 1 and 0. The data were simulated with 1,000 animals
tagged each year, for the 3 years of tagging. Ten thousand data
sets were simulated for each scenario. Computations were done
using the software environment R (R Development Core Team
2008), as described below. These computations could have also
been done using the program SURVIV (White 1992) or MARK
(White and Burnham 1999).

The function rmultinomial in the R package combinat
(Chasalow 2005) was used to generate multinomial data sets
with specified sample sizes and cell probabilities. The function
nlm was used to minimize the negative log-likelihood functions
(R Development Core Team 2008). Standard errors were es-
timated by inverting the Hessian matrix using the R function
solve. The true standard error was determined from the variabil-
ity of the 10,000 estimates of each parameter. The difference
between these quantities is the bias of the estimator of standard
errors. The output from the Monte Carlo simulations includes
estimates of the parameters for each simulated data set as well as
the bias, the percent bias of the average estimate (referred to as
% bias), standard errors, and the bias of the estimated standard
errors. Additionally, the root mean squared error (RMSE) for
each parameter was calculated as

RMSE =
√

bias2 + variance =
√∑T

i=1 (θ̂i − θ)2

T
(10)

(see Hogg et al. 2005), where T is the number of simulated data
sets (10,000) and θ̂i is the ith estimate of the parameter whose
true value is θ.

In the simulations, the combined short-term survival rate
from tagging and the short-term probability of tag retention, ϕ,
was set equal to 1. Then equation (1) becomes

f = λu. (11)

With the year split into two parts, there is a tag recovery param-
eter for each part of the year, given by fa∗ and f b for the newly
tagged cohorts and f a and f b for the previously tagged cohorts
in model 0′. These tag recovery parameters can be modeled as

fa = λf ua, (12)

f ∗
a = λcua, (13)

and

fb = λf ub, (14)

where λc is the tag reporting rate during part (a) of the first year
each cohort is at liberty (when the tags are clean and becoming
fouled), λf is the tag reporting rate when the tags are fouled,
ua is the exploitation rate during part (a) of the year, and ub is

the exploitation rate during part (b) of the year. The exploitation
rates are constrained by

ua + ub ≤ 1 − S. (15)

Data Generated under Model 0′: Base Scenario
The parameters for the first set of simulations were loosely

patterned after data from the queen conch Strombus gigas fish-
ery of the Turks and Caicos Islands, British West Indies. The
queen conch fishery was chosen because tag fouling is known to
be a problem and the possibility of a tagging program was being
explored. The exploitation rate, u = 0.2, was based on the ratio
of the annual harvest plus local consumption to the estimated
biomass at the start of the year as determined from a surplus
production model (Kathy Lockhart, Department of Environ-
ment and Coastal Resources, Turks and Caicos Islands, personal
communication). For these simulations it was assumed that tag-
ging would occur during the summer when the conch fishery is
closed. The tags were assumed to take 6 months to foul com-
pletely, so the year was split in half, with part (a) running from
July to December and part (b) running from January to June. The
percentage of the fishing effort occurring in part (a) of all years
was set at 50% to reflect the seasonal distribution of the harvest.

The survival rates were calculated from the exploitation rate
(u) of 0.2 and a natural mortality rate (M) of 0.3/year (SEDAR
2007) using Baranov’s catch equation, which relates the ex-
ploitation rate to the two components, F and M, of the total
instantaneous mortality rate:

u = F

F + M

(
1 − e−(F+M)

)
, (16)

and

S = e−(F+M). (17)

The survival rate in the first year, S1 = 0.57, comes from
solving equation (16) for F given M and then calculating S from
equation (17). The survival rate in the second year, S2 = 0.62,
was altered from that in the first year to allow the years to have
different survival rates.

A preliminary tag fouling study was conducted in the Turks
and Caicos Islands on queen conchs. The conchs were tagged
with custom-made tags (Hallprint custom code T6230; Hallprint
Pty. Ltd., Hindmarsh Valley, South Australia) and vinyl tubing
(spaghetti) tags (FLOY TAG, Inc., Seattle, Washington) secured
around the spires of the conchs. After 4 months the tags were
becoming fouled and, significantly, fouling and sedimentation
of the shell began to obscure the tags. Unfortunately, the ex-
periment ended prematurely and precise fouling times are not
available. Conch fishermen typically free-dive in less than 10 m
of water working off small boats with 50–65 hp engines and the
conchs are collected by hand (see Medley and Ninnes 1999).
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152 WATERHOUSE AND HOENIG

TABLE 3. Parameter values used in the simulations. All three models were
parameterized with the year split into two parts, to make analysis with model 0′
possible, but for models 0 and 1 the parameters shown in the table are collapsed
back into their form for a full year, which is the way they appear in the actual
model parameterizations. Some parameters are confounded with others and
therefore cannot be estimated on their own. For example, in model 0 and model
1, survival in the third year and the tag recovery rate in the fourth year, S3 f 4,
are confounded. Parameters that are confounded appear as products in the table.
The simulations were conducted with 1,000 animals tagged each year.

Model 1 Model 0′ Model 0

Parameter Value Parameter Value Parameter Value

f 1 0.092 f 1a
∗ 0.100 f 1

∗ 0.178
S1 0.570 S1a f 1b 0.040 S1 0.570
f 2 0.091 S1 0.570 f 2 0.091
S2 0.620 f 2a 0.050 S2 0.620
f 3 0.086 S2a f 2b 0.041 f 3 0.086
S3 f 4 0.050 S2 0.620 S3 f 4 0.050

f 3a 0.048 f 2
∗ 0.170

S3a f 3b 0.038 f 3
∗ 0.186

S3 f 4a 0.028
S3S4a f 4b 0.023
f 2a

∗ 0.090
f 3a

∗ 0.110

The meats are removed from the shell by the boat driver while
the divers continue collecting conchs; to remove the meat the
shell is knocked (hammered) on the spire, which is where the tag
is placed on the shell. Based on the nature of the fishery and the
proposed tag reward (US$5 for the return of a tag to a fish pro-
cessing plant), the tag reporting rate for newly tagged animals,
λc, was set at 1.0. Information on the tag reporting rate for fouled
animals, λf, was unavailable, so the initial value of 0.5 was used
for the base case for model 0′ and then varied in later cases.

To compare model 0′ with models 1 and 0, it was necessary
to generate data for two parts of each year, (a) and (b), and then
combine the data from the parts of the year to analyze the data
sets with models 1 and 0. All parameters were initially defined
for parts of the year and then collapsed for use in other models
(Table 3) using the following relationships:

f1 = f1a + S1af1b (18)

f2 = f2a + S2af2b (19)

f3 = f3a + S3af3b (20)

and

S3f4 = S3f4a + S3S4af4b. (21)

Note that some parameters are confounded and cannot be esti-
mated; rather, the products are estimated (see Table 3).

The performance of the various models is described in terms
of the bias, root mean squared error, true standard error, and
mean estimated standard error for the survival rates during the
first and second years and the recovery rates in the second and
third years. These four parameters were chosen for comparison
because they are the only interesting parameters in common
when the data are analyzed under all three models (the fifth
parameter in common, S3 f 4, is confounded).

To determine the effect that the tag reporting rate for fouled
animals (λf) has on model performance, the effect of tag fouling
on tag visibility was varied in additional scenarios. In all cases,
the tag reporting rate for clean, newly tagged animals (λc) was
kept at 1.0. Simulations were run using λf values of 0.25, 0.50
(the base scenario for model 0′), 0.75, 0.80, and 0.90.

Data Generated under Model 1
The purpose of this scenario was to evaluate the penalty for

applying model 0′ when model 1 is correct. Data were generated
using parameters based on the queen conch fishery in the Turks
and Caicos Islands (Table 3) assuming that fouling was not a
problem, that is, the tag reporting rate for newly tagged animals
was equal to that of previously tagged animals.

Data Generated under Model 0
Under model 0, it takes a full year for newly tagged ani-

mals to have the same tag visibility (and thus reporting rate) as
previously tagged animals. For this simulation, the parameters
were again based on information from the queen conch fishery
of the Turks and Caicos Islands (see the description of the data
from model 0′ and Table 3). The tag reporting rate for clean,
newly tagged animals remained 1.0, and that for fouled animals
was 0.5. In other words, the tag recovery rate of fouled animals
was equal to one-half the value of the tag recovery rate of clean
animals, such that 0.5(fj) = fj∗.

Additional simulations were conducted to evaluate the per-
formance of the models under various levels of tag visibility and
thus various tag reporting rates. Simulations were run with the
tag reporting rate for fouled tags set at 0.25, 0.50 (the base case
for model 0), 0.75, 0.80, and 0.90.

SIMULATION RESULTS

Data Generated under Model 0′: Base Scenario
As expected, when we used data generated under the

condition that tag fouling affects tag reporting and it takes
less than a year for tags to fully foul (the case of model 0′

being appropriate), the parameter estimates for S1, S2, f 2, and
f 3 were essentially unbiased whether estimated by model 0
(all parameters with % bias <3%) or model 0′ (all parameters
with% bias <1%) (Table 4). Analysis with model 1 produced
biased estimates for all four parameters: survival rates were
underestimated (when λf = 0.50, the % bias of Ŝ1 = –18% and
that of Ŝ2 = –26%), and the fraction caught and reported in
years 2 and 3, f 2 and f 3, were overestimated (the % bias of f̂2 =

D
ow

nl
oa

de
d 

by
 [

C
ol

le
ge

 o
f 

W
ill

ia
m

 &
 M

ar
y]

 a
t 1

4:
39

 1
7 

A
pr

il 
20

12
 



SURVIVAL RATES WHEN TAG VISIBILITY CHANGES OVER TIME 153

TABLE 4. Simulation results for estimating survival rates in the first two years, S1 and S2, and the expected fraction that is caught and reported in years 2 and
3, f 2 and f 3, under the base scenario in which tag fouling occurs and takes half a year (data generated with model 0′). Values for all parameters appear in Table
3. The smallest values for bias,% bias, SE of the estimates, and root mean squared error (RMSE) are in bold italics. Mean ŜE refers to the mean of the 10,000
estimated standard errors that come from the square root of the variance (obtained by calculating the inverse of the Hessian). The SE of the estimates refers to the
true standard error (i.e., the standard deviation) of the 10,000 estimates of each parameter. The parameter λf is the tag reporting rate for fouled tags.

Model fitted Parameter True value Mean estimate Bias % Bias Mean ŜE SE of estimates RMSE

λf = 0.25
0′ S1 0.570 0.579 0.009 1.6 0.118 0.119 0.120
1 S1 0.570 0.329 –0.241 –42.3 0.051 0.052 0.247
0 S1 0.570 0.582 0.012 2.1 0.143 0.147 0.147

0′ S2 0.620 0.633 0.013 2.2 0.140 0.141 0.142
1 S2 0.620 0.343 –0.277 –44.7 0.049 0.048 0.281
0 S2 0.620 0.644 0.024 3.9 0.193 0.198 0.199

0′ f 2 0.043 0.044 0.001 1.9 0.010 0.010
1 f 2 0.043 0.101 0.058 134.2 0.009 0.010 0.058
0 f 2 0.043 0.045 0.002 5.1 0.015 0.015 0.015

0′ f 3 0.047 0.048 0.001 1.1 0.010 0.010
1 f 3 0.047 0.122 0.075 158.7 0.010 0.010 0.075
0 f 3 0.047 0.049 0.002 4.5 0.016 0.016 0.017

λf = 0.50
0′ S1 0.570 0.575 0.005 0.9 0.082 0.082 0.083
1 S1 0.570 0.467 –0.103 –18.2 0.053 0.053 0.116
0 S1 0.570 0.577 0.007 1.2 0.102 0.102 0.103

0′ S2 0.620 0.626 0.006 0.9 0.098 0.099 0.099
1 S2 0.620 0.459 –0.161 –26.0 0.051 0.050 0.169
0 S2 0.620 0.632 0.012 2.0 0.133 0.135 0.135

0′ f 2 0.091 0.092 0.001 0.7 0.014 0.014
1 f 2 0.091 0.125 0.034 37.2 0.010 0.010 0.035
0 f 2 0.091 0.093 0.002 2.1 0.021 0.021 0.022

0′ f 3 0.086 0.087 0.001 0.8 0.013 0.013
1 f 3 0.086 0.139 0.053 61.4 0.010 0.010 0.054
0 f 3 0.086 0.088 0.002 2.1 0.020 0.020 0.020

λf = 0.75
0′ S1 0.570 0.573 0.003 0.5 0.064 0.065 0.065
1 S1 0.570 0.541 –0.029 –5.0 0.049 0.049 0.057
0 S1 0.570 0.575 0.005 0.9 0.080 0.080 0.081

0′ S2 0.620 0.625 0.005 0.8 0.076 0.076 0.076
1 S2 0.620 0.540 –0.080 –12.9 0.049 0.049 0.094
0 S2 0.620 0.627 0.007 1.1 0.105 0.106 0.106

0′ f 2 0.134 0.135 0.001 0.5 0.017 0.017
1 f 2 0.134 0.146 0.012 9.2 0.010 0.010 0.016
0 f 2 0.134 0.136 0.002 1.2 0.025 0.025 0.025

0′ f 3 0.135 0.135 0.000 0.2 0.016 0.016
1 f 3 0.135 0.166 0.031 22.9 0.011 0.011 0.033
0 f 3 0.135 0.137 0.002 1.6 0.025 0.026 0.026
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154 WATERHOUSE AND HOENIG

37% and that of f̂3 = 61%). The estimates from analysis with
model 0′ have the lowest bias and root mean squared error.
Model 1 has the lowest estimated standard error for all four
parameters but is not an attractive estimator for these situations
because of the high bias and thus high RMSE.

As the effect of change in visibility on reporting rate de-
creases, model 1 begins to yield smaller RMSEs than model 0′

for S1 and f 2 (Figure 2); this is because the estimates from model
1 are becoming closer to being essentially unbiased (when λf =
0.75, the % biases are as follows: Ŝ1, –5%; Ŝ2, –13%, f̂2, 9%;
and f̂3, 23%; Table 4) and have better precision than model 0′

as a result of there being fewer parameters.

Data Generated under Model 1
Using data generated under the condition that tag fouling has

no effect on the tag reporting rate (model 1 is appropriate) yields
essentially unbiased estimates of S1, S2, f 2, and f 3 under all three
models (Table 5). Model 1 produces estimates with the smallest
standard error of the estimate and RMSE. Model 0′ produces
estimates with RMSEs larger than those of model 1 but smaller
than those of model 0 (the RMSE of model 0′ is 22% larger than
that of model 1 for Ŝ1, 29% larger for Ŝ2, 75% larger for f̂2, and
63% larger for f̂3). Model 0 produces estimates with the largest
RMSEs. Thus model 0 performs the worst (the RMSE of model
0 is 51% larger than that of model 1 for Ŝ1, 75% larger for Ŝ2,
175% larger for f̂2, and 150% larger for f̂3).

Data Generated under Model 0
When data are generated under model 0, tag fouling affects

the tag reporting rate and it takes one full year for the tags
to become fouled. When the tag reporting rate for previously
tagged (fouled) animals is one-half that of newly tagged animals,
only model 0 produces essentially unbiased estimates of S1, S2,
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FIGURE 2. Absolute values of the biases and root mean squared errors (RM-
SEs) for the estimates of survival during the first year, Ŝ1, and the second year,
Ŝ2 with respect to the ratio of the tag reporting rates for fouled (λf) and clean
tags (λc). The data were generated for the situation in which tag fouling affects
visibility and it takes a half year for tags to become fouled (data generated under
model 0′). The tag reporting rate for clean tags was 1.0 and that for fouled tags
was 0.25, 0.50, 0.75, 0.80, or 0.90. Note that when the tag reporting rate for
fouled tags is 0.75 or more, model 1 has a lower RMSE for Ŝ1 than both models
0 and 0′. Additionally, model 0′ always has a lower RMSE than model 0 for
both Ŝ1 and Ŝ2.

TABLE 5. Simulation results for estimating survival rates in the first two years, S1 and S2, and the expected fraction that is caught and reported in years 2 and
3, f 2 and f 3, when tag fouling does not affect visibility (data generated with model 1). See Table 4 for more details.

Model fitted Parameter True value Mean estimate Bias % Bias Mean ŜE SE of estimates RMSE

0′ S1 0.570 0.575 0.005 0.9 0.082 0.082 0.083
1 S1 0.570 0.574 0.004 0.7 0.067 0.068 0.068
0 S1 0.570 0.577 0.007 1.2 0.102 0.102 0.103

0′ S2 0.620 0.626 0.006 0.9 0.098 0.099 0.099
1 S2 0.620 0.624 0.004 0.7 0.077 0.077 0.077
0 S2 0.620 0.632 0.012 2.0 0.133 0.135 0.135

0′ f 2 0.091 0.092 0.001 0.7 0.014 0.014
1 f 2 0.091 0.091 0.000 –0.1 0.008 0.008 0.008
0 f 2 0.091 0.093 0.002 2.1 0.021 0.021 0.022

0′ f 3 0.086 0.087 0.001 0.8 0.013 0.013
1 f 3 0.086 0.086 0.000 –0.1 0.008 0.008 0.008
0 f 3 0.086 0.088 0.002 2.1 0.020 0.020 0.020
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SURVIVAL RATES WHEN TAG VISIBILITY CHANGES OVER TIME 155

TABLE 6. Simulation results for estimating survival rates in the first two years, S1 and S2, and the expected fraction that is caught and reported in years 2 and
3, f 2 and f 3, for the situation in which tag fouling occurs and takes a full year (data generated with model 0). See Table 4 for more details

Model fitted Parameter True value Mean estimate Bias % Bias Mean ŜE SE of estimates RMSE

λf = 0.25
0′ S1 0.570 0.288 –0.282 –49.5 0.054 0.055 0.287
1 S1 0.570 0.230 –0.340 –59.6 0.035 0.036 0.342
0 S1 0.570 0.583 0.013 2.3 0.149 0.153 0.153

0′ S2 0.620 0.348 –0.272 –43.9 0.063 0.061 0.279
1 S2 0.620 0.256 –0.364 –58.7 0.035 0.034 0.366
0 S2 0.620 0.645 0.025 4.1 0.198 0.205 0.206

0′ f 2 0.043 0.120 0.077 179.7 0.021 0.080
1 f 2 0.043 0.158 0.115 268.1 0.011 0.012 0.116
0 f 2 0.043 0.045 0.002 5.3 0.015 0.016 0.016

0′ f 3 0.043 0.116 0.073 170.2 0.018 0.075
1 f 3 0.043 0.173 0.130 303.4 0.012 0.012 0.131
0 f 3 0.043 0.045 0.002 4.8 0.015 0.016 0.016

λf = 0.50
0′ S1 0.570 0.438 –0.132 –23.2 0.059 0.059 0.145
1 S1 0.570 0.395 –0.175 –30.8 0.043 0.043 0.181
0 S1 0.570 0.577 0.007 1.2 0.102 0.102 0.103

0′ S2 0.620 0.477 –0.143 –23.1 0.067 0.066 0.158
1 S2 0.620 0.404 –0.216 –34.8 0.042 0.041 0.220
0 S2 0.620 0.632 0.012 2.0 0.133 0.135 0.135

0′ f 2 0.091 0.138 0.047 52.1 0.019 0.051
1 f 2 0.091 0.159 0.068 75.0 0.011 0.011 0.069
0 f 2 0.091 0.093 0.002 2.1 0.021 0.021 0.022

0′ f 3 0.086 0.137 0.051 59.2 0.018 0.054
1 f 3 0.086 0.173 0.087 100.9 0.011 0.012 0.088
0 f 3 0.086 0.088 0.002 2.1 0.020 0.020 0.020

λf = 0.75
0′ S1 0.570 0.518 –0.052 –9.1 0.057 0.058 0.078
1 S1 0.570 0.503 –0.067 –11.8 0.045 0.045 0.081
0 S1 0.570 0.575 0.005 0.9 0.080 0.081 0.081

0′ S2 0.620 0.574 –0.046 –7.4 0.068 0.068 0.082
1 S2 0.620 0.519 –0.101 –16.4 0.046 0.046 0.111
0 S2 0.620 0.627 0.007 1.1 0.105 0.106 0.106

0′ f 2 0.134 0.158 0.024 17.8 0.019 0.031
1 f 2 0.134 0.164 0.030 22.5 0.011 0.011 0.032
0 f 2 0.134 0.136 0.002 1.3 0.025 0.025 0.025

0′ f 3 0.133 0.155 0.022 16.8 0.018 0.029
1 f 3 0.133 0.178 0.045 33.5 0.011 0.011 0.046
0 f 3 0.133 0.135 0.002 1.6 0.025 0.025 0.025
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FIGURE 3. Absolute value of the biases and root mean squared errors (RM-
SEs) for the estimates of survival during the first year, Ŝ1, and the second year,
Ŝ2. The data were generated for the situation in which tag fouling affects vis-
ibility and it takes a full year for tags to become fouled (data generated under
model 0). The tag reporting rate for clean tags was 1.0 and that for fouled tags
was 0.25, 0.50, 0.75, 0.80, or 0.90. Note that when the tag reporting rate for
fouled tags is 0.75 or more, model 0′ has a lower RMSE than model 0.

f 2, and f 3 (Table 6). Model 0 has the lowest RMSE for every
parameter when λf = 0.25 or 0.50.

For estimating S1 and S2, the most appropriate model shifts
from model 0 to model 0′ as the ratio of reporting rates (previ-
ously tagged : newly tagged) approaches 1.0 (Figure 3).

DISCUSSION
There are three important factors to consider when choosing

between models 1, 0, and 0′. First, the time period that must
elapse for new tags to have the same tag reporting rate as older
tags (the length of part [a] of the year) must be bounded, that is,
known to be less than some specified period of time. When part
(a) is neither very short nor close to a full year, model 0′ may
be appropriate. As part (a) of the year becomes shorter model
1 becomes more appropriate, and as part (a) becomes longer
(close to 1 year) model 0 becomes appropriate. If part (a) takes
longer than 1 year, a new model should be parameterized to
account for this.

Second, the timing of the fishery relative to the timing of the
fouling (which determines parts [a] and [b] of the year) should
be considered. When fishing occurs in both parts (a) and (b) of
the year, model 0′ should remain appropriate (given fouling that
lasts less than a year). However, if all the fishing effort takes
place in period (b), then the recaptures for all (a) periods will

be zero and model 1 will be a more appropriate model. If all the
fishing effort takes place in period (a), then model 0 should be
the most appropriate model.

Finally, the magnitude of the change in visibility affects
which model is the most appropriate. If the change in visibility
is small (i.e., tag visibility does not greatly vary between cohorts
in a given part of a year), then model 1 is more appropriate than
model 0′ or model 0.

If tag fouling is known to occur in much less than a year and
affects the reporting rate greatly, then model 0′ will outperform
model 1 (Figure 2) and models 0′ and 0 will both provide unbi-
ased estimates. Even when it takes a full year for the tags to foul,
model 0′ can outperform model 0 (in terms of lower RMSE) as
the influence of tag fouling on the tag reporting rate becomes
smaller, making λf closer in value to λc (Figure 3). Furthermore,
when fouling takes less than a year, model 0′ can outperform
models 1 and 0.

As the change in visibility due to tag fouling becomes smaller,
model 1 produces smaller RMSEs when tag fouling takes a year
(model 0) and when tag fouling takes less than a year (model 0′).
This emphasizes the importance of considering the magnitude
of change in visibility when selecting a model. As the ratio of the
tag reporting rate for fouled tags to new tags becomes closer to
1.0, model 1 becomes the most appropriate model (Figures 2, 3).

If fouling is known to affect the tag reporting rate but
the time necessary for a tag to become fouled has not been
determined, models 0′ and 0 are valid candidates since they
provide unbiased estimates when tag fouling takes less than a
year. If possible, a study should be done to determine the time
to tag fouling. Such a study may be inexpensive and require
only modest effort, and it may provide key information for
choosing between models 0 and 0′.

For the queen conch fishery of the Turks and Caicos Islands,
model 0′ should be used if the change in tag visibility causes the
tag reporting rate to decline by 25% or more (Table 4; Figure 2).
Otherwise, model 1 will suffice. This highlights the importance
of studying the effect that a change in tag visibility has on the
tag reporting rate.

The problem of changing tag visibility is similar to that of
tag loss. Model 0′ is parameterized such that the change in tag
visibility takes an appreciable amount of time, which is less
than a year, and then the tag visibility remains constant over
time. Thus, one can think of two time periods: one when the
visibility is constant over time and one when it is not. In contrast,
tag loss is of two types. Type I, or short-term, tag loss occurs
so rapidly that it happens before fishing begins (Beverton and
Holt 1957). Short-term tag loss essentially modifies the effective
number tagged. Type II, or long-term, tag loss is similar to
changing visibility over time except that it is usually described
as occurring progressively and continuously rather than leveling
off. If it can be assumed that the rate of tag loss declines to 0.0 in
less than a year, then model 0′ would be appropriate. However,
most of the literature supports the idea of ongoing, progressive
tag loss.
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Tabulating the recaptures by part of a year rather than a full
year should not be a problem. It has been shown by Pollock
and Raveling (1982) that when conducting a tagging study it
is important to determine the year of tag recapture for Brownie
models because misreporting the year causes biased estimates.
Thus, assuming that the advice of Pollock and Raveling is fol-
lowed, determining whether the tag return is from part (a) or
part (b) of the year should add little or no additional cost to the
study.

In cases in which tag fouling occurs, takes less than a year,
and causes a change in the tag reporting rate, model 0′ can
greatly improve the efficiency of the tagging study (in terms
of smaller standard errors). Furthermore, model 0′ provides the
first estimate of survival during the first year, S1, at the end of
the second year, which is a full year before model 0 provides an
estimate.

The current study is one of the first works to demonstrate the
value of tabulating tag returns with a greater periodicity than
the periodicity of tagging (e.g., tabulating by parts of the year
when tagging occurs annually) for studies with the Brownie
experimental design. One other example of the value of tabulat-
ing recaptures in this way is given in Waterhouse and Hoenig
(2011), where partial-year tabulation is used for dealing with
the delayed mixing of newly tagged animals with the popula-
tion at large. This method of dealing with changing tag visi-
bility could easily be extended to instantaneous-rates models
and could be extended to incorporate estimates of fishing effort
(Hoenig et al. 1998b). Another class of tagging models utilizes
the exact times of recapture of animals (see Leigh et al. 2006).
The approach of Leigh et al. (2006) is innovative and promis-
ing, though more complicated than the models considered here.
The relative performance of the various approaches remains to
seen, for example, with respect to their robustness to failures of
assumptions. It is yet to be seen what further benefits can accrue
from tabulating recapture data on a finer scale than the tagging
periodicity.
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