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Abstract.—A. persistent question in fishery research is whether extreme environmental events,
such as climatic perturbations or discharges of toxic substances, influence recruitment. Superposed
epoch analysis has been proposed as a statistical test to address such questions. In a superposed
epoch analysis of recruitment, a test statistic is computed from the differences between recruitments
in years with extreme environmental events ("key years") and recruitments in immediately sur-
rounding years; the significance of the test statistic can be determined either parametrically or
nonparametrically. Here we examine the power of two parametric and four nonparametric test
statistics to detect, in a variety of simulated data sets analyzed by the superposed epoch method,
associations between key events and unusual values of recruitment. The statistical significance of
the nonparametric test statistics is determined by randomization, the significance of the parametric
statistics by consulting tabled distributions. Under the simulated conditions, we observed essen-
tially no loss of statistical power when conducting the superposed epoch analysis with a random-
ization test when the parametric approach was also appropriate. However, in situations when
parametric testing was not appropriate, the randomization test was often much more powerful
than a parametric test. We also evaluated the statistical power of superposed epoch analyses
conducted with test statistics in which recruitment data from each key year were compared in a
paired fashion to data from the surrounding years. For data with strong trend or a high degree of
autocorrelation, such paired test statistics outperformed the corresponding unpaired statistics;
otherwise, the unpaired statistics tended to be more powerful. In testing simulated conditions
patterned after the population of chub mackerel Scomber japonicus off southern California, we
estimated the power of the proposed randomization test as approximately 0.35 to 0.50.

An important, persistent question in fishery re- data. Many standard nonparametric tests, such as
search is whether a specified type of external the Wilcoxon signed-rank test, assume indepen-
event—such as an El Nino-Southern Oscillation dence of the errors and thus are inappropriate for
event (Sinclair et al. 1985) or a period of extreme time-series data (Hollander and Wolfe 1973).
water temperatures (Norton 1987)—influences a Time-series analysis in the sense of Box and Jen-
stock's recruitment or production. Hypotheses kins (1970) is often useful; however, the Box-Jen-
about such influences have sometimes been tested kins approach is not satisfactory when the dynam-
with parametric statistical methods such as re- ics of the time series are complicated and the length
gression or correlation analysis. However, the as- of the time series is short. Also, gaps in the time
sumptions (independence, homogeneity, and nor- series complicate the analysis,
mality of the errors) of parametric statistical tests To address such questions, Prager and Hoenig
are not always met, seriously affecting both the (1989) proposed using superposed epoch analysis
realized significance levels and the statistical pow- (Haurwitz and Brier 1981), an approach that com-
er of the tests. pares recruitment in years containing specific, en-

In general, testing such a relationship requires vironmental events ("key events") to recruitment
a statistical method designed for autocorrelated in immediately surrounding "background" years.
———— (Such an analysis could also be applied to other

1 Contribution MIA-90/91-72 of the Miami Labora- response variables such as measures of species
tory. Southeast Fisheries Science Center, U.S. National abundance along a transect.) To determine statis-
Marine Fisheries Service. tical significance, a superposed epoch analysis em-
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TABLE 1.—The six test statistics examined in this study.

Symbol
D

7*'
Q.
Qrw

Type of statistic
Difference of means
Student's /
Student's t
Paired Student's t
Paired Student's /
Modified paired Student's /

Method of determining significance

Randomization
Tabled distribution
Randomization
Tabled distribution
Randomization
Randomization

Text equation

(D
(2)
(2)
(4)
(4)
(6)

ploys a parametric or nonparametric test statistic;
any number of statistics could be devised for a
particular analysis. Most nonparametric test sta-
tistics used in such analyses are similar to para-
metric statistics, but to avoid the assumptions of
parametric testing, their statistical significance is
determined by randomization tests rather than by
reference to tabled significance values. Thus the
data may be nonindependent and the populations
need not be normal.

Although superposed epoch analysis appears
appropriate for recruitment studies, there remain
two major questions about it. First, is it statisti-
cally powerful enough to be useful? Knowledge of
statistical power (Cohen 1988) is particularly im-
portant in a management context (Peterman 1990).
Second, how can one choose the test statistic that
is likely to be the most powerful? Here we describe
a series of Monte Carlo simulations addressing
both questions. We also examine some conse-
quences of conducting superposed epoch analyses
with parametric test statistics in inappropriate sit-
uations—that is, when data have a component of
time trend or autocorrelation.

The Hypothesis Test in Superposed
Epoch Analysis

The goal of a superposed epoch analysis of re-
cruitment data is to test whether there is an as-
sociation between key events and high or low val-
ues in a time series of recruitment (Prager and
Hoenig 1989). By definition, key events are ob-
served in the explanatory variable. They need not
be contemporaneous with corresponding recruit-
ment responses; however, the presumed lag be-
tween cause and effect should be constant and
should be determined a priori. (In the following
treatment, we assume that there is no lag; how-
ever, the modification for a nonzero lag is straight-
forward.) In time series with annual observations,
years incorporating key events are known as "key
years." To define key years, it may sometimes be
necessary to make a continuous explanatory vari-
able (e.g., total rainfall) discrete by setting a

threshold, either high or low. In other cases, key
events are natural occurrences such as floods,
earthquakes, or severe storms.

In superposed epoch analysis, the values of the
response variable in key years are compared to
those in "background years," i.e., in the b \ years
before and the b2 years after a key event. The
values of b} and b 2 are set according to the nature
of the data. Here we use b, = b 2 = 2 years, but
b{ need not equal b2. If key events are frequent,
a key year T, may become a background year for
a second key year rk> in which case the response
variable for r, is considered to have a missing val-
ue whenever T, is used as a background year. How-
ever, if key events are infrequent and b i and b 2
are small, many years in the series will be neither
key years nor background years.

When using superposed epoch analysis to test
recruitment time series, we define the null hy-
pothesis to be

• //0: high (or low) values of the recruitment
index are not associated with key events.

We define the alternative hypothesis to be
• Ha: high (or low) values of the recruitment

index tend to be associated with key
events.

Whether we look for increased or decreased re-
cruitment to be associated with key events de-
pends on our a priori beliefs about the interaction
between environment and the population.

Test Statistics
Any number of statistics could be used within

a superposed epoch analysis to test the null hy-
pothesis given above. We examined six related
statistics (Table 1). The simplest test statistic, D.
is simply the difference between the mean recruit-
ment in key years (E) and the mean recruitment
in background years (B):

D = E - B. (1)

When D is used in a superposed epoch analysis,
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a randomization test (described later) is used to
determine statistical significance.

The second and third test statistics, T, and Try
are computed as a standard two-sample Student's
/-statistic:

Tt=Tr
(E-B)

(2)

ST is the pooled estimate of the standard error,
computed as in a standard Student's /-statistic:

7

(SS£ + SSB
NENB(NE

)(NE + Afr)T
+ NB - 2) J *

Here NE and NB are the numbers of observations
of recruitment in key years and background years,
respectively; SS£ is the sum of squared deviations
of the recruitment values in key years from their
mean; and SS* is the sum of squared deviations
of the recruitment values in background years from
their mean. The distinction between T, and Tr is
that the statistical significance of Tt is obtained
from tables of Student's /-distribution, whereas
the significance of Tr is estimated by randomiza-
tion. Use of T, requires an assumption that vari-
ances are equal, which is appropriate for the sim-
ulations below but might be inappropriate for some
data. Given enough key events to reliably estimate
the variance of E, one could use the Behrens-
Fisher approximate /-statistic for unequal vari-
ances (Snedecor and Cochran 1980) instead of T,.
This consideration does not apply to the non-
parametric statistic Tr; nonetheless, a similar non-
parametric statistic might be based on the Beh-
rens-Fisher approximation.

The fourth and fifth test statistics are each com-
puted as a standard paired Student's /:

- ft)
NES (4)

EQ

EJ is the recruitment in key year i and /?, is the
mean recruitment in the background years sur-
rounding key year /. The estimated standard de-
viation SQ is computed as for a standard paired
Student's /-statistic:

- 1
1*

-ft)2 •
J

(5)

The sixth test statistic, W (Prager and Hoenig
1989), is a modification of Qr that accounts for
the varying number of background years that may
be associated with key years. Although the num-
ber of background years associated with a key year

is normally b, + b2, a key year whose epoch en-
compasses another key year, a missing value of
recruitment, or either end of the time series usu-
ally has a smaller number of associated back-
ground years.

W•• (6)

d being the mean of all paired differences between
recruitment in key-event years and recruitment in
corresponding background years:

i NE n,

<? = T7 2 2 (£/-*.)• w
™B /-i y-i

The standard error Sw is computed as for a paired
/-test:

f 1 NK "' T
"= v—r22(*<-*«-*>2 ;\_MB ~ * i-i >-i J

; (8)

n, is the number of background years associated
with the /th key event, and BfJ is the recruitment
in the yth background year associated with key
event i.

Randomization Tests
Under the null hypothesis, there is no associa-

tion between the presence of a key event and the
occurrence of unusually strong recruitment.
Therefore, except for sampling variability, the
mean recruitment in key years should be the same
as the mean of any NE observations of recruitment
drawn randomly from the data. Under the null
hypothesis, then, the expected value of a test sta-
tistic for a set of key years defined by an environ-
mental variable is the same as its expected value
with the key years drawn randomly from the time
series. This equality can enable us to find the null
distribution of any test statistic, either exactly or
approximately.

To describe the exact null distribution of a test
statistic, we compute the statistic for each possible
set of locations of the NE key events within the
time series ofN observations. There are Nl/[NE! •
(N - NE)l] such sets of locations, and the value
of the test statistic must be computed for each. A
test based on this method might be called an exact
randomization test.

Because the computations for an exact random-
ization test can easily become overwhelming, we
might prefer to conduct a Monte Carlo random-
ization test, in which we approximate the null dis-
tribution of the test statistic to a high degree of
precision. In this test, we repeatedly select random
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positions for the NK key events and compute the
test statistic for each set of positions. The distri-
bution formed by these statistics is the estimated
null distribution of the particular statistic. For ei-
ther an exact or a Monte Carlo randomization test,
the critical value of the test statistic for a proba-
bility Pa of type I error is the value above which
100(1 - Pa)% of the computed values of the sta-
tistic occur. (This is for an upper one-tailed test.)
If the test statistic computed from the true posi-
tion of key events is greater than this critical value,
the results are considered significant at the P„ lev-
el. In the Monte Carlo randomization method, the
significance level is estimated as (jc + l)/(v + 1),
where x is the number of simulated test statistics
greater than the actual test statistic and v is the
number of simulations.

In the work described here, we used the Monte
Carlo randomization method with 10,000 trials.
This reduced the amount of computation needed
for many of our simulations and allowed pro-
gramming an algorithm that was quite general.
Further explanation of randomization tests can be
found in Sokal and Rohlf (1981), Edgington (1987),
Noreen (1989), and Prager and Hoenig (1989).

Simulated Conditions for Power Analysis
Power tests of superposed epoch analysis are

complicated by the unavailability, in most cases,
of analytical estimates of power for randomization
tests (Edgington 1987). We therefore used an ad-
ditional, "outer" Monte Carlo simulation to es-
timate power. (This was distinct from the "inner"
Monte Carlo simulation used in each randomiza-
tion test.) In this approach, we generated many
35-year time series of simulated recruitment data,
varying the simulated conditions to include a va-
riety of realistic conditions. The conditions varied
were (i) the underlying model for recruitment, (ii)
the parameter values—trend and autocorrela-
tion—of the underlying model, (iii) the increase b
in recruitment associated with a key event, and
(iv) the number NE of key events in the time series.
Each combination of specific conditions for (i)
through (iv) was termed a scenario. We generated
500 simulated data sets for each scenario and con-
ducted a superposed epoch analysis of each data
set, computing statistical power for each of the six
statistics.

The simulated data sets were generated by three
underlying recruitment models. Each of the three
models was a special case of the following rather
general model:

Yr = aK r _ , + fa + 5ZT + er\ (9)

YT is recruitment in year r\ a is an autoregressive
parameter; ft is a trend parameter; d is the mean
increase in recruitment in key years; Z r is an in-
dicator for key years,

Zr =
1 if r is a key year
0 otherwise;

and the random error term er ~~ N(0y 1).
The first model, with a = 0, ft = 0, and 5 > 0

in equation (9), simulated conditions in which a
parametric two-sample /-test would be appropri-
ate. Recruitment values were independently and
identically distributed unit-normal random vari-
ables in all years except key years. In key years,
which were randomly selected, recruitment was
normally distributed with mean 6 and unit vari-
ance. This first set of simulations was run to de-
termine what penalty (if any), in terms of achieved
power, arises from using the randomization pro-
cedure when the usually parametric /-test is ap-
propriate. The scenarios used for this model were
all combinations of 6 € {0.0, 0.5, 1.0, 1.5, 2.0, 3.0,
4.0} and NE* {3,5}.

The second model introduced linear trend but
not autocorrelation into the time series: 6 > 0, ft
> 0, and a = 0 in equation (9). Scenarios gener-
ated under this model comprised all combinations
of 5 € {0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0}, NE e {3,
5},and0€ {0.1,0.2,0.5}.

The third model was first-order autoregressive,
with 6 > 0, a > 0, and 0 = 0 in equation (9).
Scenarios generated under this model comprised
all combinations of 6 e {0.0, 0.5, 1.0, 1.5, 2.0, 3.0,
4.0}, NK e {3, 5}, and a € {0.2, 0.35, 0.6, 0.9}.

For each scenario, we generated and analyzed
500 simulated data sets and conducted super-
posed epoch analyses with the six statistics (Table
1) to repeatedly test the null hypothesis of no sig-
nificant association between key events and in-
creased recruitment. For the models described, this
was equivalent to testing the null hypothesis that
6 = 0. The number of times that a particular sta-
tistic led to rejection of the null hypothesis at P0
= 0.05 was divided by 500 to provide the estimate
(<£) of that statistics power in that scenario. Be-
cause this proportion approximates a binomial
random variable, a confidence band can be con-
structed about the estimate by using the large-
sample normal approximation (e.g., Hollander and
Wolfe 1973). With 500 realizations of each sim-
ulation, the 95% confidence interval is ±0.045
when <j> — 0.5; the confidence interval approaches



POWER STUDY OF SUPERPOSED EPOCH ANALYSIS 127

zero as the estimated power <f> approaches 0 or 1.
Because the confidence intervals were so small,
they are not reported.

For completeness, we point out that the vari-
ance of our power estimator is slightly larger than
that of a binomial random variable, because the
outcome for each data set in the simulation is
determined with some uncertainty. (This is be-
yond the variance due to random sampling from
a binomial distribution.) The formula for the vari-
ance of our estimator is that used for two-stage
sampling (Cochran 1977). However, as the num-
ber of realizations used to test a particular data
set becomes large, the added uncertainty ap-
proaches zero. Because we used 10,000 realiza-
tions for each data set, the added variance is neg-
ligible and need not be considered further.

Results
The results summarize the power of superposed

epoch analysis in a variety of situations and with
a variety of test statistics. We observed two pat-
terns that were expected. First, the power of each
test statistic, under each set of simulated condi-
tions, increased as the effect (d) of a key event
increased (Figures 1, 2). Second, each of the six
test statistics was more powerful at detecting as-
sociations in data sets with five key events (Fig-
ures le-h and 2e-h) than in data sets with three
key events (Figures la-d and 2a-d).

Used within a superposed epoch analysis, the
most powerful statistics were D and W. In the
simulated data sets with linear trend, D was the
most powerful statistic except when the linear trend
was very strong or extreme (Figure Ic, d, g, h).
When the trend was very strong (ft = 0.2 year'1),
D was nearly as powerful as the most powerful
statistics; but when the trend was extreme, per-
haps unrealistically so (0 = 0.5 year'1), D was sub-
stantially less powerful than the most powerful
statistics. In the presence of extreme trend, W was
the most powerful statistic; in other cases, it was
nominally less powerful than D. In the data sets
simulated with autocorrelation, D was most pow-
erful except in scenarios with both five key events
and very high autocorrelation; in these cases, W
was superior, and W always performed well in the
scenarios with autocorrelation.

The effects of using paired statistics to conduct
the superposed epoch analysis varied with the data
structure and the test statistic. When no autocor-
relation or linear trend was present (Figure la),
the paired statistics were less powerful than the
unpaired statistics. In these cases, the two least

powerful statistics were Qr and Q,, which are both
based on the unmodified paired Student's /. How-
ever, under the same conditions the W-statistic,
based on a modified paired Student's /, was sim-
ilar in power to the most powerful statistics. For
simulated data sets with strong trend or autocor-
relation, the ^-statistic was in some cases the most
powerful choice for conducting a superposed ep-
och analysis (Figures Id, h and 2h).

Discussion
The results demonstrate the relative strengths

of these parametric and nonparametric test statis-
tics when used in a superposed epoch analysis. As
with many statistical procedures, the choice among
test statistics cannot be made on the basis of pow-
er alone, but depends on the structure of the data.
Test statistics based on parametric theory are usu-
ally most powerful when their assumptions are
met, but many parametric (and some nonpara-
metric) methods are inappropriate for data that
are not independent. In a superposed epoch anal-
ysis of autocorrelated data, this consideration
would dictate the use of a randomization test in-
stead of a parametric test. Our results are in ac-
cordance with the theory.

We observed no loss of power when random-
ization tests were used in the scenarios without
trend or autocorrelation, cases in which the para-
metric tests were also appropriate. In contrast,
when the parametric statistics were used inappro-
priately, they were often much less powerful than
the randomization tests. This emphasizes the dan-
ger of using any statistical procedure when its as-
sumptions are not met. Both the power level and
the realized significance level can be quite differ-
ent from anticipated values, which can lead to
inappropriate conclusions.

This result is consistent with the statistical lit-
erature, which finds that nonparametric statistics
are usually quite efficient. Hollander and Wolfe
(1973: 1) provided this summary of the situation:
"Although at first glance most nonparametric pro-
cedures seem to sacrifice too much of the basic
information in the samples, theoretical investi-
gations have shown that this is not the case. More
often than not, the nonparametric procedures are
only slightly less efficient than their normal theory
competitors when the underlying populations are
normal (the home court of normal theory meth-
ods), and they can be mildly and wildly more ef-
ficient than these competitors when the underly-
ing populations are not normal." Transforming
the data to normality is frequently recommended;



128 PRAGER AND HOENIG

-e-

0)

o
(D
"5
E

"to

Increase in Recruitment in Key Years
FIGURE 1.—Estimated power of six test statistics (Table 1) used in superposed epoch analyses with (a-d) three

key years or (c-h) five key years in a 35-year simulated time series of recruitment. Recruitment in years without
key events is normally distributed with M = 0, a2 = 1. Abscissa gives the expected increase in recruitment associated
with a key event. The simulated data have no autocorrelation, but have the following levels of linear trend over
time: (a) and (e) no trend; (b) and (0 moderate trend, 0.1 year'1; (c) and (g) strong trend, 0.2 year"1; (d) and (h)
extreme trend, 0.5 year-1. Symbols for statistics: O = D; A = T,; D = T, ; V = W\ 0 = Qr; • = Q, •
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FIGURE 2.—Estimated power of six test statistics (Table 1) used in superposed epoch analyses with (a-d) three

key years or (e-h) five key years in a 35-year simulated time series of recruitment. Recruitment data are generated
according to the autoregressive model given in equation (9). Abscissa gives the expected increase in recruitment
associated with a key event. The autoregressive parameter a took on the following levels: (a) and (e) a - 0.2; (b)
and (0 a = 0.35; (c) and (g) a - 0.6; (d) and (h) a = 0.9. Symbols for statistics: O = D\ A = T,; D - T,; V = W\
<> = &;• = G,-
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however, this cannot always be accomplished and,
moreover, this does not address nonindepen-
dence.

The comparison of paired and unpaired test sta-
tistics was also interesting. The paired test statis-
tics were more powerful than the unpaired statis-
tics when the data contained strong trends or strong
autocorrelation. However, the paired statistics were
often less powerful than the unpaired alternatives
when the data contained only weak trends or weak
autocorrelation. Despite these findings, tests pro-
vided by the paired statistic W were usually among
the most powerful, suggesting that this statistic is
the most widely useful of the six examined.

Although we simulated a limited number of sce-
narios, our results are not limited to those specific
conditions. This is because tests based on the six
statistics examined, like most statistical tests, are
not affected by scaling the data. (This result was
determined analytically in the simpler cases and
confirmed by simulation.) Let the standard devi-
ation of recruitment in non-key years (the error
standard deviation) in equations (9), (10), and (11)
be called a. In our study, we used a = 1, but the
results are generalizable. For data with linear trend,
the determining parameters are the two ratios b:a
and 0:a, the ratios of the expected increase in re-
cruitment and the linear trend, respectively, to the
error standard deviation. Thus Figure Ic, which
describes results with 6 = {0, 0.5, .. ., 4}, 0 = 2,
and a = 1, is equally applicable to data with 6 =
{0, 1.0, . . ., 8}, ft = 4, and a = 2. For data with
autocorrelation, the determining parameter is the
ratio 8:<r. The scale invariance means that the re-
sults presented in Figures 1 and 2 are applicable
to a wide range of realistic conditions.

The most serious limitation in the generality of
our results is that they apply only to 35-year time
series with three or five key events and an epoch
width of 5 years. However, induction can provide
a rough indication of the power in other circum-
stances. For example, in a similar series with six
key events, one would expect the power to be
slightly higher than for one with five key events.
For making precise estimates of power under a
variety of conditions, the computer programs used
here are available, with some refinements, in
Hoenigetal. (1989).

Our power tests were conducted entirely within
the framework of superposed epoch analysis; they
did not include a comparison of superposed epoch
analysis to other parametric or nonparametric
procedures appropriate for autocorrelated data. It
is likely that certain parametric procedures may

be more powerful than superposed epoch analysis
when all assumptions of the parametric test are
met. The most widely accepted of these proce-
dures, generalized least squares, requires estimat-
ing the variance-covariance matrix of the un-
known random errors, which often cannot be done
with a reasonable degree of precision (Kennedy
1979). An advantage of nonparametric super-
posed epoch analysis is that such estimation can
be avoided. Another advantage is that, by exam-
ining only segments of the data (epochs) within
which key events take place, the effects of random
or systematic extraneous variation are lessened.
This should increase the ability to detect an hy-
pothesized effect, compared to a method that tries
to test a univariate explanatory effect on all the
data; however, we know of no formal study of this
proposition. A third advantage of using a non-
parametric superposed epoch analysis is that one
need not know the true structure of the data, be-
cause the ^-statistic appears to provide a pow-
erful test in many, if not all, cases.

The present power study provides insight into
our ability to detect the influence of key events on
recruitment time series. As an additional example,
we considered a scenario based on the logarithm
of the first-year survival index for chub mackerel
Scomber japonicus (Fairish and MacCall 1978;
MacCall et al. 1985; Prager and MacCall 1988;
Prager and Hoenig 1989). Sinclair et al. (1985)
hypothesized that unusually high values of the chub
mackerel survival index are associated with El
Nino-Southern Oscillation events. In the time se-
ries of 40 years (1929-1968), 3 years have sea level
anomalies of at least 1.5 SD above the mean. The
index contains no significant linear trend, but is
strongly autocorrelated. Ordinary least-squares
estimates of the parameters of equation (9) are
a = 0.57,1 = 0.96. Based on the power curves in
Figure 2c, one would estimate the power to detect
a significant association in such a data set at roughly
0.35, indicating a moderate level of statistical
power. We believe this to be an underestimate,
because the presence of adjacent key years in the
chub mackerel data reduces the least-squares es-
timate of 6 (and hence the estimate of power from
Figure 2c), but not the ability of superposed epoch
analysis to detect the effect from the actual data.
We cannot estimate the amount of underestima-
tion, but if the true value were 5 = 1.25, for ex-
ample, the estimated power would be slightly more
than 0.5. Based on this example and the other
results presented here, we conclude that the sta-
tistical power of superposed epoch analysis should
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be sufficient in many cases to detect associations
between environmental events and unusually high
or low recruitment.
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