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Tag return studies play an important role in providing estimates of mortality rates
needed for management of many fisheries, but current methods of estimation do not
allow age dependence of instantaneous mortality rates. We present models that allow
age-dependent fishing and natural mortality rates, an important advance, because there is
often substantial variation in age (and size) of fish at tagging. Age dependence of fishing
mortality is modeled by assuming that availability to the fishery, that is, selectivity,
depends on age but is constant over years. We assume that all age classes are tagged
each year, and allow for incomplete mixing of newly tagged fish and for fisheries that
are year-long or limited to a fishing season. We investigate parameter redundancy and
estimator performance using analytic and simulation methods, and show that estimator
properties are poor if the tag reporting rate is estimated (without auxiliary data such as
planted tags). We analyzed multiple age class tag return data from a 13-year study on
striped bass (Morone saxatilis) and saw clear evidence that selectivity increases with
age. Assuming that the tag reporting rate is constant and known, results also demonstrate
age dependence of natural mortality rates, and an increase in natural mortality rates from
about 1999 coinciding with observation of a bacterial disease in the fish.

Key Words: Instantaneous mortality rates; Near-singularity; Parameter redundancy;
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1. INTRODUCTION

Tag return studies play an important role in providing estimates of mortality rates needed
for management of many fisheries. Tagged fish are released annually and the tags from har-
vested fish are returned to the agency in charge by fishers. Typically, the tagged fish vary
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over a large range of ages and sizes. For example, the Maryland Department of Natural
Resources (MDNR) carried out a study on the Chesapeake Bay striped bass (Morone sax-
atilis) stock in order to estimate fishing mortality rates. Reliable information is essential for
management because this stock supports one of the most important recreational fisheries
on the Atlantic coast. A total of 24,533 fish, ranging in age from 2 to 8+ years, were tagged
between 1991 and 2002. The releases and tag returns for this study are presented in the
Appendix.

Brownie, Anderson, Burnham, and Robson (1985) presented models for tag return data
based on annual survival and “reported exploitation” rates. They noted (Brownie et al. 1985,
p. 14) that without additional information on the reporting rate, the exploitation rate cannot
be estimated. In fisheries, it is important to obtain separate estimates of the two components
of mortality, fishing, and natural mortality, and Pollock, Hoenig, and Jones (1991) showed
how to estimate both the instantaneous fishing and natural mortality rates if an estimate
of the tag reporting rate is available. Hoenig, Barrowman, Hearn, and Pollock (1998a)
formulated a general theory for the instantaneous rates version of the tag return models. By
analyzing multiple subsets of a dataset on lake trout (Salvelinus namaycush), they showed
that it is possible to estimate the tag reporting rate in addition to the fishing and natural
mortality rates, but that estimates were not stable. Hoenig et al. (1998b) presented models
that allowed for incomplete mixing of newly tagged fish. Tag reporting rates were assumed
to be known or well estimated from another study.

A limitation of the methods of Pollock et al. (1991) and Hoenig et al. (1998a) is the
assumption that fishing mortality does not vary with age. For the striped bass dataset,
given the variation in age at tagging, we expect that fishing mortality rates depend on age
and an appropriate analysis should allow such age dependence. We therefore developed
a generalization of the Hoenig et al. (1998a,b) models to allow multiple age classes with
potentially different fishing mortality rates and also possibly different natural mortality
rates.

In this article, we present the new age-dependent models for the case where multiple ages
of fish are tagged each year. We examine whether the tag reporting rate can be estimated
and address parameter redundancy issues for models with different degrees of age and
year specificity. We assess performance of estimators under certain models by simulation.
The new models are applied to the striped bass dataset and results show evidence of age
dependence of both fishing and natural mortality rates.

2. MODEL STRUCTURE

2.1 Basic Model: Continuous Fishery

We consider multiple age tagging studies, where tagging and release occur at the be-
ginning of the year and harvest occurs continuously during the entire year. Let Nik be the
number of fish tagged at age k and released in year i(k = 1, 2, . . . , K, i = 1, 2, . . . , I ),
and let Rijk be the number of these Nik fish that are subsequently harvested and reported
in year j (j = i, i + 1, . . . , J ). Age dependence of the instantaneous fishing mortality rate
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is modeled by allowing recruitment into the fishery to be related to age. Thus, for fish of
age a in year j , the instantaneous fishing mortality rate is Fja = Fj Sela , where Fj is the
instantaneous fishing mortality rate in year j for fully recruited fish, and Sela is the selec-
tivity coefficient for age a fish. We assume that the age at which fish are fully recruited, ac,
is known, and that ac does not exceed the number of age classes tagged. That is, Sela ≡ 1
for a > ac, where ac ≤ K . Assuming selectivity to be constant over years for each age
results in a parsimonious representation of age and year dependence for fishing mortality.

We also let M be the instantaneous natural mortality rate, and λ the tag reporting rate
(the probability that the tag is reported, given that a tagged fish is caught). For simplicity,
we assume at first that M and λ are constant over year and age. Models with M and λ age
and/or year dependent are investigated in Sections 3 and 5.

To present expected numbers of tag returns, and obtain a likelihood, the following
assumptions (which extend those in Brownie et al. 1985) are required. We assume there
is no tag loss (immediate or long-term), tag numbers are correctly reported, and tagging
induced mortality is negligible. If immediate tag loss occurs, the parameter λ is actually
a product of the tag retention and tag reporting rates. There is no emigration. Fishing
and natural mortality forces are additive, and the instantaneous rates F and M (or more
generally, their ratio), are constant within a year. Fish behave independently with respect to
their mortality process. Age at tagging is correctly identified, and there is no heterogeneity
in mortality among fish within the same age specific release cohort.

Under these assumptions, the annual survival and recovery rates are obtained from
the instantaneous rates using a competing risks approach. Also, the tag returns Rijk , j =
i, . . . , J , from fish tagged at age k and released in year i, follow a multinomial distribution.
The cell expectations are

E
[
Rijk

] = Nik Pijk,

where

Pijk = the probability that a fish tagged at age k and released in year i, is harvested and
returned in year j ;

Sijk = the conditional probability of surviving year j , given it is alive at the start of the
year, for a fish tagged at age k in year i;

and, for a fishery continuous over the whole year,

Pijk =





j−1∏

v=i

Sivk


(1 − Sijk

) FjSelk+j−i

FjSelk+j−i+M
λ (when j > i)

(
1 − Sijk

) FjSelk
FjSelk+M

λ (when j = i)

Sijk = exp
(−FjSelk+j−i − M

)
.
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The full likelihood function is product multinomial:

L1 =
K∏
k=1

I∏
i=1

(
Nik

Riik, Rii+1k, . . . , RiJk

)
 J∏

j=i

P
Rijk

ijk



(

1 −
J∑

v=i

Pivk

)Nik−∑J
v=i Rivk

.

(2.1)

Maximum likelihood estimates (MLEs) based on L1 are obtained numerically using
software such as SURVIV (White 1983). We consider models where λ is a known constant,
and also models where λ must be estimated in addition to the parameters Fj , j = 1, . . . , J ,
Sela, a = 1, . . . , ac, and M . A third case, with important practical implications, occurs
when independent, auxiliary data are available to estimate λ. For instance, a study may
include use of high reward tags in addition to the regular tags (Pollock, Hoenig, Hearn, and
Calingaert 2001). Assuming independence of returns from the two types of tags, the joint
likelihood for the two types of returns would be L1 × L2 where L2, the likelihood for the
high reward tags, has the same form as L1 but with λ = 1. Or, if a planted tag study has
been performed with m tags planted in the catch from which v tags are reported, then the
likelihood function for the planted tag data is binomial,

L3 =
(
m

v

)
λv(1 − λ)m−v,

and assuming independence of the planted and regular tag returns, the joint likelihood is
the product L1 × L3.

2.2 Limited Fishery

In many fisheries, the fishing season is limited to part of the year only. In this case,
the definitions of Fj , Sijk , and Pijk , are different but the model structure is otherwise
unchanged. We present the modifications assuming that harvest occurs during a fraction
T of the year (0 ≤ T ≤ 1) immediately following release of the tagged fish. Other more
general formulations are possible based on the models in Hoenig et al. (1998a).

We define Fj = T F�
j , where F�

j is the instantaneous fishing mortality rate during the

fishing season in year j . Assuming that the ratio F�
j /M is constant over the fishing season,

then

Pijk =





j−1∏

v=i

Sivk


[1 − exp

(−FjSelk+j−i − TM
)] Fj Selk+j−i

Fj Selk+j−i+TM
λ (where j > i)

[
1 − exp

(−FjSelk+j−i − TM
)] Fj Selk

Fj Selk+TM
λ (when j = i)

Sijk = exp
(−Fj Selk+j−i − M

)
.

In some situations, the fishing season is compressed into a brief period and natural mortality
is assumed to occur after the harvest is taken. For such a pulse fishery (or Type 1 fishery,
Ricker 1975), we let T F�

j → Fj as T → 0, with Pijk modified accordingly.
The likelihood function for the limited and pulse fishery models is obtained from L1 in

(2.1) by substituting the appropriate expressions for Pijk and Sijk .
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2.3 Incomplete Mixing of Newly Tagged Fish

We also extend the incomplete mixing model of Hoenig et al. (1998b) to allow age
dependence, assuming a year-long fishery. For fully recruited fish in year j , we let F ∗

j

represent the instantaneous fishing mortality rate for newly tagged fish, and let Fj be the
rate for previously released fish. The definitions of other parameters are unchanged, and the
likelihood is given by L1 with

Pijk =





j−1∏

v=i

Sivk


(1 − Sijk

) FjSelk+j−i

FjSelk+j−i+M
λ (when j > i)

(1 − Sijk)
F ∗
j Selk

F ∗
j Selk+M

λ (when j = i)

Sijk =
{

exp(−FjSelk+j−i − M) (when j > i)

exp(−F ∗
j Selk − M) (when j = i)

3. PARAMETER REDUNDANCY

In describing the age-independent models, Hoenig et al (1998a) noted that if λ is con-
stant over time, then λ is “estimable in theory.” Similarly, the basic model described in
Section 2, with year specific fishing mortality, age-dependent selectivity and constant natu-
ral mortality, is full rank whether λ is known or estimated. Other models which permit age
and year dependence of M are of considerable biological interest, but raise questions about
overparameterization, or parameter redundancy. We therefore used methods outlined by
Catchpole and Morgan (1997) to investigate parameter redundancy for a number of models
with different degrees of age and year dependence.

Catchpole and Morgan (1997) showed that parameter redundancy is equivalent to sin-
gularity of the information matrix I(θθθ) for a class of models that includes the product
multinomial likelihood L1. They also showed how to obtain I(θθθ), for a multinomial distri-
bution, in terms of the derivative matrix, D(θθθ), which has ij th element dij = ∂µj

∂θi
, where the

cell expectations µj are functions of the unknown parameters θi . Parameter redundancy is
demonstrated by showing that I(θθθ) is singular or, equivalently, that D(θθθ) is rank deficient.

In order to use the computer algebra approach described by Catchpole, Morgan, and
Viallefont (2002), we considered a small study with three age classes tagged in each of
three years and three years of recovery. We assumed that the number of age-specific Sel,
M , and λ parameters was at most three (the number of age classes identified at tagging)
and did not attempt to generalize to situations with extended age dependence or additional
years of recovery. The models studied here, and in subsequent sections, are represented by a
list of parameters in parentheses. A subscript y indicates that the parameter is year specific,
a subscript a indicates that the parameter is age specific, and no subscript means that the
parameter is constant over ages and years. If the parameter list includes λ, or λy , and so on,
then the λ’s are unknown and must be estimated. Otherwise, the λ’s are assumed known.
For example, the most general model studied is denoted (Fy,My•a,Sela, λy•a), where the
notation My•a indicates that a separable model is used to account for year and age effects on
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Figure 1. Full rank and rank deficient models, as determined by status of the information matrix, in a set of
hierarchical models for multiple age tag return data, based on tagging three age classes for three years, with three
years of recoveries: (ns, p) indicates a full rank model with p estimable parameters and (s, p, q) indicates a rank
deficient model with p parameters, of which q < p are estimable.

natural mortalityM . The age-specific rates for year 1 (M1a, a = 1, 2, 3+) are adjusted using
year-specific constants for years 2 and 3 (M2a = bM1a , and M3a = cM1a, a = 1, 2, 3+).

The symbolic algebra package MAPLE (Maplesoft 2003) was used to obtain the matrix
D(θθθ), and where possible its rank was obtained using computer algebra. For the more
complex models it was necessary to determine the rank of D(θθθ) numerically by specifying
the parameter values. Assuming the λ’s are known, the general model (Fy,My•a,Sela),
and all reduced models, are full rank. In contrast, if the λ’s are unknown, both the general
model (Fy,My•a,Sela, λy•a), and the simplest possible model (F,M, λ), which assumes
Sela = 1, 1 ≤ a ≤ 5, are parameter redundant. Various intermediate models are full rank,
however, and so we show results in Figure 1 for a number of models where the λ’s are
unknown. In one set of reduced models (left side of Figure 1), M and/or λ are year specific
but not age specific and in the other set (right side of Figure 1), M and/or λ are age specific
but not year specific. All models with M and/or λ year specific but not age specific are
full rank. The models (F,Ma,Sela, λ) and (F,M,Sela, λa), which include two sets of age
specific parameters, but no year specificity, are parameter redundant.

To better understand the source of parameter redundancy, we note that the cell proba-
bilities, Pijk , are functions of θ = FSel λ and Z = FSel +M , with appropriate subscripts
to indicate year and age dependence. If for a particular model, the number of F , M , Sel, λ
parameters is greater than the number of distinct θ, Z parameters, the model is parameter
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redundant. It is easily seen that the simplest model (F,M, λ) is overparameterized, because
thePijk can be written in terms of just two parameters, θ = Fλ andZ = F +M . For models
withF constant, and both Sel,M , or both Sel, λ, age dependent, the number ofF,M,Sel, λ
parameters exceeds the number of estimable θ, Z parameters. For example, under model
(F,Ma,Sela, λ), the basic parameters are θa = FSelaλ, and Za = FSela + Ma , fewer
than the number of F,Ma,Sela, λ parameters. In contrast, when F is year specific, there is
a greater number of θay and Zay parameters, and more information for identification of the
F,M,Sel, λ parameters.

Parameter redundancy of the simplest model (F,M, λ) suggests that full rank models
in Figure 1 will exhibit problems associated with near-singularity (Catchpole, Kgosi, and
Morgan 2001; Nasution, Brownie, Pollock, and Powell 2004). Following Catchpole et al.
(2001), we therefore evaluated I(θθθ) and its eigenvalues, and examined the eigenvector
corresponding to the smallest eigenvalue (EVmin), for various models and parameter values
similar to those used in the simulations below. All calculations assumed N = 1,000 fish
tagged and released annually in each age class. As expected, EVmin was smaller for models
with λ estimated compared to the λ known cases, for example, EVmin = 4.2 compared
to 23.8 for models (Fy,M,Sela, λ) and (Fy,M,Sela), respectively. Near singularity was
slightly worse when the number of M parameters increased from 1 to 3 [values of EVmin

were 4.2 and 3.4 for models (Fy,M,Sela, λ) and (Fy,Ma,Sela, λ), respectively]. In the λ
known case, reducing the number of Sel parameters by fixing Sel3 = 1 had a large impact,
EVmin increased from 23.8 to 119 for the basic model (Fy,M,Sela) and from 8.2 to 61.5
for model (Fy,Ma,Sela). As predicted from the structure of the θ, Z parameters, values of
EVmin increased with increasing variation in the values of Fy .

Coefficients in the eigenvector corresponding to EVmin were of similar absolute mag-
nitude for many of the models with small EVmin indicating that all parameters are poorly
estimated. An exception to this occurred in models with Sel3 = 1, where the coefficients
corresponding to Sel1,Sel2 indicated better performance for estimators of these parameters.
Examining the cell probabilities for direct recoveries, the approximation x ≈ 1−e−x , when
x is small, gives Piik = (1 − e−(FSelk+M))

FSelk
FSelk+M

λ ≈ FSelkλ, so that ratios of direct
recoveries provide information about ratios of Selk . Thus, if Sela = 1 for one or more of the
age classes tagged (i.e., K > ac), the result is that estimators of Sela have good precision
even when λ is estimated (see also Myers and Hoenig 1997).

4. SIMULATION STUDY

To further assess the impact of the near-singularity phenomenon, we carried out a sim-
ulation study to investigate the properties of estimators under models (Fy,M,Sela) and
(Fy,M,Sela, λ), these being two reasonably parsimonious models that are also of bio-
logical interest. Both models allow annual variation in fishing pressure and age-dependent
selectivity, but assume a constant natural mortality rate, M . The first model assumes λ is
known, while the second requires estimation of λ.

We used the new version of program SURVIV (White 1983), modified by James Hines
of Patuxent Wildlife Research Center, to generate data and to obtain MLEs. We assumed
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five years of tagging and either five or seven years of recovery, with either 500 or 1,000 fish
tagged annually in each of five age classes. Fish were assumed to be fully recruited at age
4 (Sela = 1 for a > 3). We generated 500 replicate datasets for each case, with parameter
valuesF1 = 0.2,F2 = 0.5,F3 = 0.3,F4 = 0.4,F5 = 0.6,F6 = 0.3,F7 = 0.4, Sela = 0.6,
0.7, 0.9, for a = 1, 2, 3, respectively, M = 0.2, and λ = 0.3. We generated data assuming
complete mixing for both a continuous fishery and a pulse fishery. For incomplete mixing
models, additional parameter values were F ∗

1 = 0.2, F ∗
2 = 0.6, F ∗

3 = 0.4, F ∗
4 = 0.5,

F ∗
5 = 0.7.

Evidence that near-singularity worsens as variation in the Fy decreases led to including
an additional case with the same parameter values for Sela ,M , andλ, but withFj = 0.4, j =
1, . . . , 5. Complete mixing, 500 releases in each age class, and five years of recovery, were
assumed. Finally, we carried out simulations to study the impact on estimator performance
of adding 50 planted tags. Parameter settings were otherwise the same as for the complete
mixing, continuous fishery case. Estimates were obtained using the correct likelihood in all
cases (i.e., there was no model misspecification).

Average estimates and standard errors are reported in Table 1 for the case of a continuous
fishery with complete mixing, seven years of recovery, and Fy ranging from 0.2 to 0.6.
Results for five years of recovery showed the same patterns and are not shown. Similarly,
results for the case of a pulse fishery show similar patterns and are not presented here
(see Jiang 2005). When 500 fish are tagged in each age class, estimators under model
(Fy,M,Sela)have good properties with relative bias less than 2% and relative standard error
(RSE) less than 11%. Under model (Fy,M,Sela, λ), with the exception of λ̂, estimators
again have little bias, but precision is poor. For example, the RSE of λ̂ is 42% for five years
of recoveries, and 30% for seven years of recoveries. RSE for M̂ is of similar magnitude.
There is a noticeable increase in the precision of estimators when N = 1,000 fish of each
age class are tagged annually, compared to tagging 500 fish. For example, RSEs of λ̂ and M̂

are 17% and 26%, respectively, with N = 1,000, compared to 30% and 38%, respectively,
for N = 500.

For the case where Fj = 0.4, j = 1, . . . , 5, results (not shown) are essentially the same
under model (Fy,M,Sela) as in the variable F case, but under model (Fy,M,Sela, λ) bias
of the estimators λ̂ and M̂ is substantially greater in the constant F versus the variable F

case. Standard errors of these estimators increase by more than a third for the Fj = 0.4
case compared to the variable F case. As noted in Section 3, greater variation in the true
Fj leads to cell probabilities that contain more information for estimation of M and λ. In
contrast, estimators of selectivity are essentially unbiased and precise, regardless of whether
λ is known or estimated, or whether the Fj are variable or constant. This agrees with results
in Section 3 that estimators of Sela will have good properties under models in which the
number of these parameters is smaller than the number of age classes identified at tagging.

Table 1 also shows the effect of augmenting a hypothetical tag return study with a
planted tag study with 50 tags planted in the catch to provide an independent estimate
of λ. All estimators are essentially unbiased; relative bias of λ̂ is less than 2%. With the
additional information from the planted tags, the precision of some estimators is still poor,
but is substantially improved compared to the case where no external information about λ
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Table 1. Average Estimates (with standard errors in parentheses), Obtained (a) Under Model (Fy , M , Sela ),
or (b, c) Under Model (Fy , M , Sela, λ), From Simulated Data for a Continuous Complete Mixing
Fishery, Assuming a Study With Five Years of Tagging and Seven years of Recoveries. For each of
five age classes, either N = 500 fish, or N = 1,000, fish are tagged annually. For (c), the study is
supplemented with returns from 50 planted tags. Results are based on 500 replications.

(b) λ estimated (c) λ estimated
Parameter Value (a) λ known no planted tags 50 planted tags

Continuous complete mixing fishery with N = 500
F1 0.2 0.20 (0.02) 0.20 (0.04) 0.20 (0.04)
F2 0.5 0.50 (0.03) 0.50 (0.11) 0.50 (0.08)
F3 0.3 0.30 (0.02) 0.30 (0.07) 0.30 (0.05)
F4 0.4 0.40 (0.02) 0.40 (0.09) 0.40 (0.06)
F5 0.6 0.60 (0.04) 0.60 (0.15) 0.60 (0.11)
F6 0.3 0.30 (0.03) 0.31 (0.09) 0.30 (0.07)
F7 0.4 0.40 (0.06) 0.42 (0.15) 0.41 (0.12)
M 0.2 0.20 (0.01) 0.20 (0.08) 0.20 (0.05)
λ 0.3 — 0.32 (0.09) 0.31 (0.05)

Sel1 0.6 0.61 (0.06) 0.61 (0.06) 0.61 (0.06)
Sel2 0.7 0.70 (0.05) 0.70 (0.05) 0.71 (0.05)
Sel3 0.9 0.90 (0.06) 0.90 (0.06) 0.91 (0.06)

Continuous complete mixing fishery with N = 1,000
F1 0.2 0.20 (0.02) 0.20 (0.03) 0.20 (0.03)
F2 0.5 0.50 (0.02) 0.49 (0.08) 0.50 (0.06)
F3 0.3 0.30 (0.01) 0.30 (0.05) 0.30 (0.04)
F4 0.4 0.40 (0.02) 0.39 (0.06) 0.40 (0.05)
F5 0.6 0.60 (0.03) 0.59 (0.10) 0.60 (0.09)
F6 0.3 0.30 (0.03) 0.30 (0.06) 0.30 (0.05)
F7 0.4 0.40 (0.05) 0.40 (0.10) 0.41 (0.09)
M 0.2 0.20 (0.01) 0.20 (0.05) 0.20 (0.04)
λ 0.3 — 0.31 (0.05) 0.30 (0.04)

Sel1 0.6 0.61 (0.04) 0.61 (0.04) 0.61 (0.04)
Sel2 0.7 0.70 (0.04) 0.71 (0.04) 0.70 (0.04)
Sel3 0.9 0.90 (0.04) 0.90 (0.04) 0.91 (0.04)

is available. For instance, the RSEs of λ̂ and M̂ are 15% and 26% (compared to 30% and
38%, respectively, if there are no planted tags) when 500 fish are tagged in each age class
each year, and are 13% and 21% (compared to 17% and 26%, respectively, if there are no
planted tags) when 1,000 fish are tagged in each cohort.

Simulation results for the incomplete mixing situation (Table 2) demonstrate that es-
timators under model (Fy, F

∗
y ,M,Sela) are essentially unbiased and reasonably precise;

relative biases for all estimators are less than 2%, and RSEs for most estimators are less
than 10%. However, comparing results for the complete and incomplete mixing cases (Ta-
bles 1 and 2) we see that standard errors for F̂j , j = 2, . . . , 5 are considerably larger
in the latter case because of the larger number of parameters that are estimated. Model
(Fy, F

∗
y ,M,Sela, λ) produces estimators with little bias (relative bias less than 5% for
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Table 2. Average Estimates With Standard Errors in Parentheses from Fitting Incomplete Mixing Models (a)
(Fy , F ∗

y , M , Sela) and (b) (Fy , F ∗
y , M , Sela, λ). Five hundred fish are tagged for each of five age

classes in each of five consecutive years, with either five or seven years of recoveries. Results are based
on 500 replications.

Five years of recoveries Seven years of recoveries
Parameter Value (a) known (b) estimated (a) known (b) estimated

F ∗
1 0.2 0.20 (0.02) 0.19 (0.05) 0.20 (0.02) 0.20 (0.04)

F ∗
2 0.6 0.60 (0.05) 0.59 (0.15) 0.60 (0.04) 0.60 (0.12)

F ∗
3 0.4 0.40 (0.04) 0.39 (0.10) 0.40 (0.03) 0.40 (0.08)

F ∗
4 0.5 0.50 (0.04) 0.49 (0.13) 0.50 (0.04) 0.50 (0.10)

F ∗
5 0.7 0.70 (0.05) 0.70 (0.19) 0.70 (0.05) 0.70 (0.15)

F2 0.5 0.50 (0.05) 0.49 (0.12) 0.50 (0.05) 0.50 (0.10)
F3 0.3 0.30 (0.03) 0.29 (0.08) 0.30 (0.03) 0.30 (0.06)
F4 0.4 0.40 (0.04) 0.39 (0.10) 0.40 (0.03) 0.40 (0.08)
F5 0.6 0.60 (0.08) 0.61 (0.19) 0.60 (0.06) 0.60 (0.14)
F6 0.3 0.30 (0.04) 0.31 (0.09)
F7 0.4 0.40 (0.07) 0.42 (0.14)
M 0.2 0.20 (0.02) 0.20 (0.07) 0.20 (0.02) 0.20 (0.06)
λ 0.3 — 0.33 (0.11) — 0.31 (0.07)

Sel1 0.6 0.61 (0.06) 0.61 (0.06) 0.61 (0.06) 0.61 (0.06)
Sel2 0.7 0.70 (0.06) 0.71 (0.06) 0.71 (0.05) 0.71 (0.05)
Sel3 0.9 0.90 (0.06) 0.90 (0.06) 0.90 (0.06) 0.90 (0.06)

most estimators), but with poor precision, again demonstrating problems associated with
near-singularity when λ is estimated.

5. STRIPED BASS TAG RETURN STUDY

In the MDNR study, striped bass were tagged with internal anchor tags, the length of
each fish was determined, and an age class assigned based on the age length key method
(Secor, Trice, and Hornick 1995). We grouped data for fish tagged at eight years or older
because of small sample sizes in each year class, and omitted the data for fish tagged at age 2
for the same reason (see the Appendix). Some reported tags were from fish that were caught
and released but we assume here that all reported tags represent harvested fish, which results
in overestimation of fishing mortality. Methods to account for live releases were discussed
by Jiang (2005).

Striped bass are thought to be fully recruited at 6 years of age. Thus, we assume Sela = 1
for a ≥ 6, and let Sel3,Sel4, and Sel5 represent the selectivities for fish of age 3, 4, and 5
years, respectively. The basic model is (Fy,M,Sel3,Sel4,Sel5) with complete mixing of
new releases, age- and year-specific fishing mortality, and constant natural mortality. Tag
shedding was assumed to be negligible and the tag reporting rate was taken to be λ = 0.43.
This value is based on a high reward tagging study conducted by the Delaware Division of
Fish and Wildlife, and is used by the Atlantic States Marine Fisheries Commission Tagging
Committee in their stock assessments on striped bass. The corresponding model with λ
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estimated is (Fy,M,Sel3,Sel4,Sel5, λ).
Several modifications of the basic models were fit to the data to investigate specific

questions of interest. The incomplete mixing models (Fy, F
∗
y ,M,Sel3,Sel4,Sel5) and

(Fy, F
∗
y ,M,Sel3,Sel4,Sel5, λ), were fit to assess whether newly released fish have differ-

ent fishing mortality rates from previously released fish. To investigate the assumption that
M is independent of age, we fit models (Fy,MY ,MA,Sel3,Sel4,Sel5) and (Fy,MY ,MA,

Sel3,Sel4,Sel5, λ)which assume complete mixing, and (Fy, F
∗
y ,MY ,MA,Sel3,Sel4,Sel5)

and (Fy, F
∗
y ,MY ,MA,Sel3,Sel4,Sel5, λ) for the case of incomplete mixing. In these mod-

els, MY and MA represent the natural mortality rates for young (3 to 5 years) and adult (≥
6 years) fish, respectively.

Beginning in the late 1990s, mycobacteriosis, a disease caused by bacteria in the genus
Mycobacterium, was observed in Chesapeake Bay striped bass (Cardinal 2001). The disease
is characterized by external lesions (open sores on the skin) and internal lesions that look
like lumps in the pancreas and kidney. To allow for a possible effect of disease on natural
mortality in a parsimonious manner, we assumed that M was constant within each of two
periods corresponding to the years before and after the disease appeared. As we do not
know when survival may have been affected by the disease, we fit four such models, with
the change in M assumed to begin in 1997, 1998, 1999, or 2000. Models which incorporate
both age and year dependence of M were also considered. To investigate the effects of
a relaxation of harvest regulations which began in 1995 (Richards and Rago 1999), we
fit reduced models with constant fishing mortality rates before and after the year 1995.
For most models, we fit two versions, one with λ = 0.43 and the other with λ estimated.
SURVIV was used for all computations, and all of the models that we fit to the striped bass
data were full rank.

We used Akaike’s information criterion (AIC) to compare multiple nested and nonnested
models (Burnham and Anderson 2002). A correction to AIC for small sample sizes made
little difference and is not reported. To account for possible overdispersion in the data,
due to a lack of independence among fish of capture and survival events, we also imple-
mented the quasi-likehood approach recommended by Burnham and Anderson (2002). The
corresponding criterion is QAIC, defined as,

QAIC = −2log
[
l
(
θ̂θθ |y

)]
/ĉ + 2p,

where l
(
θ̂θθ |y

)
is the likelihood evaluated at the MLE θ̂θθ , p is the number of parameters, and

the variance inflation factor, ĉ, is calculated as ĉ = χ2/df , with χ2 and df based on the
goodness-of-fit test of the most general model in the model set.

Table 3 displays the values of AIC, �AIC (the change in AIC compared to the small-
est AIC value), QAIC, and �QAIC (the change in QAIC compared to the smallest QAIC
value) for models that assume λ = 0.43. The QAIC values were obtained using ĉ = 1.18
based on the value of the goodness-of-fit statistic for Model 1 from SURVIV. With re-
gard to the year when a change in natural mortality may have occurred, AIC and QAIC
values (not shown) suggested a change in M beginning in 1999. Of the models inves-
tigated, the smallest AIC and QAIC values were obtained with the most general model
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Table 3. Values of Model Selection Criteria for a Series of Models Applied to the MDNR Striped Bass Dataset.
All models assume λ = 0.43.

Model p AIC �AIC QAIC �QAIC

1 31 2038.24 0.00 1743.60 0.00
2 11 2071.81 33.57 1766.20 22.60
3 20 2074.46 36.22 1771.14 27.54
4 9 2110.17 71.93 1798.25 54.65
5 18 2229.58 191.34 1894.97 151.37
6 17 2348.45 310.21 2003.38 259.78
7 29 2087.75 49.51 1778.13 34.53
8 28 2180.42 142.18 1863.69 120.09
9 18 2200.93 162.69 1878.16 134.56

10 14 2380.42 342.18 2029.69 286.09
11 29 2148.06 109.82 1836.45 92.85
12 25 2234.18 195.94 1908.54 164.94

Note: Description of Models

1. (Fy, F
∗
y ,MY 91−98,MY 99−03,MA 91−98,MA 99−03,  Sel3,Sel4,Sel5)

2. (F91−94, F95−03, F
∗
91−94,  F ∗

95−03,MY 91−08,  MY 99−03,  MA 91−98,MA 99−03,Sel3,Sel4,Sel5)

3. (Fy,MY 91−98,MY 99−03,  MA 91−98,MA 99−03,Sel3,Sel4,Sel5)

4. (F91−94, F95−03,MY 91−98,  MY 99−03,MA 91−98,MA 99−03,Sel3,Sel4,Sel5)

5. (Fy,MY ,MA,Sel3,Sel4,Sel5)

6. (Fy,M,Sel3,Sel4,Sel5)

7. (Fy, F
∗
y ,MY ,MA,Sel3,Sel4,Sel5)

8. (Fy, F
∗
y ,M,Sel3,Sel4,Sel5)

9. (Fy,M91−98,M99−03,Sel3,Sel4,Sel5)

10. (Fy,M)

11. (Fy, F
∗
y ,M91−98,M99−03,Sel3,Sel4,Sel5)

12. (Fy, F
∗
y ,M)

ĉ = 1.18, based on Model 1, and p is the number of parameters.

(Fy, F
∗
y ,MY 91−98,MY 99−03,MA 91−98,MA 99−03,Sel3,Sel4,Sel5) which assumes year

specific F and F ∗, M both age and period specific, and incomplete mixing of the newly
released fish. The next best model differed in thatF andF ∗ were constant within the two pe-
riods 1991–1994 and 1995–2003 (Model 2 in Table 3). The three models with the best AIC
and QAIC values each involved age and period specific M , where the subscript A 91 − 98
indicates a rate for adult fish during 1991 to 1998, Y 91 − 98 refers to young fish during
1991 to 1998, and so on. Models with age-dependent M have better AIC values than those
with age-independent M (compare Model 5 with 6, and 7 with 8). Comparing each model
that includes F ∗ with the corresponding complete mixing model (Models 2 and 4, 5 and 7,
6 and 8, 10 and 12) provides evidence of incomplete mixing because in each case the AIC
and QAIC values are better for the version that includes F ∗.
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Table 4. Estimates, With Standard Errors in Parentheses, for the MDNR Striped Bass Data,
(a) with λ = 0.43, and (b) for the case when λ is estimated, under the model
(Fy, F

∗
y ,MY 91−98,MY 99−03,MA 91−98,MA 99−03,Sel3,Sel4,Sel5), that is, Model 1 in Table

3.

Parameter (a)λ = 0.43 (b) λ estimated Parameter (a) λ =0.43 (b)λ estimated

F ∗
91 0.25 (0.02) 0.26 (0.12)

F92 0.34 (0.03) 0.36 (0.16) F ∗
92 0.32 (0.03) 0.34 (0.16)

F93 0.29 (0.02) 0.31 (0.14) F ∗
93 0.24 (0.02) 0.25 (0.12)

F94 0.30 (0.02) 0.31 (0.14) F ∗
94 0.27 (0.02) 0.29 (0.13)

F95 0.35 (0.02) 0.37 (0.17) F ∗
95 0.35 (0.03) 0.37 (0.18)

F96 0.28 (0.02) 0.30 (0.14) F ∗
96 0.36 (0.03) 0.38 (0.18)

F97 0.31 (0.02) 0.33 (0.16) F ∗
97 0.38 (0.04) 0.40 (0.20)

F98 0.31 (0.03) 0.33 (0.17) F ∗
98 0.38 (0.04) 0.40 (0.20)

F99 0.24 (0.02) 0.25 (0.13) F ∗
99 0.44 (0.04) 0.46 (0.23)

F00 0.25 (0.03) 0.27 (0.14) F ∗
00 0.41 (0.03) 0.43 (0.21)

F01 0.22 (0.03) 0.23 (0.12) F ∗
01 0.39 (0.03) 0.41 (0.20)

F02 0.21 (0.04) 0.22 (0.11) F ∗
02 0.28 (0.02) 0.29 (0.13)

F03 0.13 (0.02) 0.14 (0.06)
Sel3 0.59 (0.06) 0.59 (0.06)
Sel4 0.71 (0.04) 0.71 (0.05)
Sel5 1.00 (0.05) 1.00 (0.05)
MY 91−98 0.39 (0.02) 0.38 (0.11)
MY 99−03 0.63 (0.08) 0.62 (0.14)
MA 91−98 0.14 (0.01) 0.13 (0.14)
MA 99−03 0.48 (0.05) 0.46 (0.15)
λ 0.41 (0.18)

Evidence that fishing mortality is age dependent is based on noting that the AIC and
QAIC values for the age-dependent models (Fy, F

∗
y ,M,Sel3,Sel4,Sel5) and (Fy,M,Sel3,

Sel4,Sel5) are substantially smaller than for the corresponding age-independent models
(Fy, F

∗
y ,M) and (Fy,M) (compare Model 8 with 12, and 6 with 10, in Table 3). Likelihood

ratio tests also convincingly reject age independence.
Estimates and their standard errors for the striped bass data under model (Fy, F

∗
y ,

MY 91−98, MY 99−03, MA 91−98, MA 99−03, Sel3,Sel4,Sel5) with λ = 0.43, and for the
corresponding model with λ estimated, are presented in Table 4. Standard error properties
agree well with patterns seen in the simulations. When we assume λ = 0.43, the precision
of estimates is reasonable (most estimated RSEs < 10%) but, except for estimates of
selectivity, standard errors are substantially larger when λ is estimated.

Point estimates are remarkably similar between the two models, no doubt because
λ̂ = 0.41 is close to the assumed value of 0.43. Estimates of selectivity show an increase
with age as expected, with an estimate equal to 1 for fish of age 5 years. There is evidence
that natural mortality is higher for young fish compared to older fish (0.39±0.02 compared
to 0.14 ± 0.01 from 1991 to 1998, and 0.63 ± 0.08 compared to 0.48 ± 0.05 from 1999
to 2003, with λ = 0.43). These estimates also reflect an increase in natural mortality for
the years 1999 to 2003, compared to the earlier years, coinciding with the observation of
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mycobacteriosis in striped bass. Estimates of fishing mortality, F , do not reflect an increase
after relaxation of fishing regulations in 1995.

To explore the sensitivity of estimates to the assumption that λ is constant and equal
to 0.43, we fit a series of models with different values of λ. Results showed that larger
values of λ are associated with smaller estimates of F and F ∗, and with larger estimates
of M . We also investigated a series of models with two λ values, λ91−98 and λ99−03, and
found that different (λ91−98, λ99−03) combinations would result in estimates ofM that were
similar in the two periods. In other words, without good information about λ, it is difficult
to distinguish which of λ or M is period specific. These sensitivity analyses emphasize the
importance of having accurate and year specific information on the tag reporting rate for
obtaining unbiased estimates of mortality rates.

6. DISCUSSION

Analysis of the striped bass data demonstrates the potential importance of our age
dependent models for multiple age, tag return datasets. We have shown that both fishing
mortality and natural mortality rates are age dependent, and that it is possible to estimate
these age dependent rates. Models that include a functional relationship between either Sel
or M and age would be interesting but are not considered here. Extensions that account for
live releases (Jiang 2005) are also of considerable practical importance.

Estimators have good properties under models that include year and age dependence
of F , and limited year and age dependence of M , provided that λ is known. When λ must
be estimated, even the basic model with M constant and F year and age dependent shows
indications of near-singularity, and estimators have poor precision when as many as 1,000
fish are tagged annually in each class. Design options that will lead to better precision include
increasing the tag reporting rate (e.g., by using reward tags) or tagging substantially larger
numbers of fish. Another option is to include tagging of fish one year younger than that of the
first harvest with selectivity assumed to be 0 for this age class (Latour, Hoenig, Hepworth,
and Frusher 2003). Our simulation results show that precision can also be improved by
obtaining supplemental information about λ. Thus, we support the recommendations of
Pollock et al. (1991, 2001, 2002) and Hearn, Hoenig, Pollock, and Hepworth (2003), that
such information should be obtained (e.g., from high-reward tagging, observed catches,
planted tags) and incorporated into the analysis on a routine basis. Time variation in the
tag reporting rate is an additional complication that we have largely ignored, but ideally
supplemental information on λ should be obtained on a yearly basis.

Our age-dependent models assume that age at tagging is determined without error. In
reality, the age length key method commonly used to assign ages results in many fish being
incorrectly classified. The effects of such misclassification errors on model performance
are beyond the scope of this article, but one way to avoid such errors is to tag mainly young
fish for which aging errors tend to be less frequent. Sampling designs involving tagging fish
in the youngest year classes are studied in Jiang (2005).
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APPENDIX

Table A.1. Release and Tag Return Data, by Age at Tagging, from the MDNR Study on
Striped Bass, 1991–2003. This dataset and sample SURVIV code can be accessed at
http://www.amstat.org/publications/jabes/data.shtml/.

Year of Number
release tagged Number recaptured

Tagged at Age 3
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

1991 288 20 8 11 6 3 3 2 1 0 0 0 0 0
1992 380 21 5 12 6 6 1 2 0 0 0 0 0
1993 159 5 6 7 1 2 0 0 0 0 0 0
1994 92 3 6 3 0 0 0 0 0 0 0
1995 221 11 11 7 7 1 1 0 0 0
1996 393 23 23 14 5 1 2 0 0
1997 31 2 0 0 1 0 0 0
1998 131 6 1 0 0 1 0
1999 178 21 5 1 2 0
2000 116 10 2 2 0
2001 116 11 3 1
2002 73 4 4

Tagged at Age 4
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

1991 202 11 15 2 5 2 1 2 0 0 0 0 0 0
1992 325 24 19 13 6 4 2 1 0 0 0 0 0
1993 721 32 41 27 14 9 4 3 0 0 0 0
1994 333 18 22 11 3 4 0 0 1 0 0
1995 112 7 5 5 4 0 2 0 0 0
1996 352 36 18 8 1 2 0 0 0
1997 372 18 22 0 7 2 1 0
1998 72 4 0 0 0 0 0
1999 221 15 7 4 3 0
2000 596 57 14 6 2
2001 412 39 13 4
2002 442 39 3
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Table A.1. continued

Year of Number
release tagged Number recaptured

Tagged at Age 5
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

1991 217 9 16 10 5 6 0 1 0 0 0 0 0 1
1992 209 13 10 7 5 2 2 0 3 0 0 0 0
1993 452 33 27 16 7 6 2 2 1 1 0 0
1994 593 56 46 14 15 8 4 3 0 0 0
1995 190 27 14 6 2 1 0 1 0 0
1996 95 7 5 9 0 1 0 0 0
1997 210 34 13 2 4 0 1 1
1998 516 62 17 11 4 2 0
1999 376 45 9 4 1 0
2000 543 59 3 2 0
2001 586 59 20 2
2002 1130 80 16

Tagged at Age 6
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

1991 344 30 34 15 6 7 3 3 3 1 0 0 0 1
1992 334 46 22 17 6 2 0 0 2 0 1 0 0
1993 285 32 21 13 9 1 2 3 0 0 1 0
1994 430 46 33 18 10 6 3 1 0 0 0
1995 434 50 28 17 6 5 0 1 0 1
1996 171 23 9 5 4 0 1 1 0
1997 63 10 3 6 0 0 0 0
1998 101 15 5 1 0 0 0
1999 245 28 10 2 0 0
2000 898 85 24 10 2
2001 438 61 8 2
2002 709 60 21
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Table A.1. Continued

Year of Number
release tagged Number recaptured

Tagged at Age 7
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

1991 310 28 21 14 7 8 3 4 1 0 1 0 0 0
1992 328 39 20 10 8 2 3 1 1 0 0 0 0
1993 331 31 24 17 8 5 3 2 0 0 0 0
1994 189 19 11 5 7 3 6 1 1 0 0
1995 273 41 15 8 5 2 3 0 2 0
1996 397 52 29 13 5 4 2 0 0
1997 75 10 3 2 0 0 0 0
1998 67 9 1 4 0 1 0
1999 94 12 7 0 0 0
2000 413 55 10 4 1
2001 316 34 5 2
2002 507 50 7

Tagged at Age 8+
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

1991 365 35 24 17 6 6 3 2 1 0 3 0 0 0
1992 384 39 23 15 14 8 9 6 4 2 0 0 0
1993 568 49 33 29 15 15 7 4 1 2 1 0
1994 371 32 24 19 9 13 8 2 2 0 1
1995 374 39 18 19 14 6 4 2 0 4
1996 719 85 43 35 13 6 5 1 1
1997 350 48 27 13 1 2 1 0
1998 280 34 14 3 5 2 1
1999 221 27 8 10 2 0
2000 368 39 15 6 2
2001 551 44 17 7
2002 598 36 15
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