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Abstract.—The index-removal method provides estimates of abundance, exploitation rate, and catchability

coefficient. Estimates from the original method suffer from poor precision. Recent work has improved the

precision of model estimates; however, the method still includes the strong assumption of constant survey

catchability over years and seasons. This assumption is not tenable in many fisheries. This work introduces a

new multiyear model, 2qIR, that allows catchability to differ between surveys of the same year. Simulations

were performed to examine the effects of variability in (1) the exploitation rate among years, (2) survey

catchability, and (3) the number of years of data on model performance. The 2qIR model estimates were

always more accurate and precise than those of the other models examined and other model scenarios in

which there was moderate contrast in exploitation among years, regardless of the seasonal difference between

survey catchability coefficients. The ratios of survey catchability tested ranged from 0.1 to 10, but the model

worked best at catchability ratios greater than 0.3. The 2qIR model performance improved slightly when a

third year was added to the data set, but performance was similar with 3 or 5 years of data. In all types of

simulations, the 2qIR model estimates were usable (i.e., not negative, infinite, or made with a convergence

error) a greater proportion of the time than were annual model estimates. The 2qIR model produced

reasonable results when applied to data from a population of southern rock lobster Jasus edwardsii in

Tasmania, whereas the models that assume constant catchability among surveys sometimes predicted

exploitation rates exceeding 100%. The results from both the simulations and the lobster data suggest that the

2qIR model can be reliably applied in more situations than models that assume constant survey catchability.

Index-removal (IR) models estimate the abundance

and survey catchability coefficient in a population that

experiences a relatively large, known removal. The

method requires that a survey index be obtained before

and after the removal and assumes that the population

is closed except for the known removals (i.e., that there

is no recruitment, immigration, or emigration between

surveys and the time between surveys is short enough

that no natural mortality occurs). Though the original

method (hereafter, the ‘‘annual model’’) is attractive

(Dawe et al. 1993) and has been known for some time

(Petrides 1949), it has received only moderate

development (Hoenig and Pollock 1998). This may

be because annual model estimates often have poor

precision (Routledge 1989; Roseberry and Woolfe

1991; Chen et al. 1998a). Ihde et al. (2008)

demonstrated that precision could be improved by

simultaneously estimating parameters for multiple

years of data. The multiple-year index-removal

(‘‘1qIR’’) model (Ihde et al. 2008) shares the

assumptions of the annual model (the closed-popula-

tion assumption is not required across years) and

further assumes that the catchability of the survey gear

remains constant across years and seasons. However, in

practice, survey catchability may be affected seasonally

by a variety of factors, such as changes in water

temperature (Paloheimo 1963), life history stage

(Ziegler et al. 2002), or fishing gear. If catchability

varies seasonally, both the annual model and 1qIR will

provide biased results, a decrease in catchability over

the season causing a negative bias in the population

estimate and a positive bias in the exploitation estimate.

In this paper we develop and test a multiple-year IR

model, the 2qIR model, which allows catchability to

vary by season. The 2qIR model can be used when (1)

pre- and postharvest survey indices of abundance have

been obtained in at least 2 years, (2) the exploitation
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rate varies among years, and (3) the seasonal catch-

ability coefficients remain constant across years. We

use simulation to evaluate the performance of the 2qIR

model. We then apply the model to a fishery for

southern rock lobster Jasus edwardsii off Tasmania,

Australia.

Methods

Model Development

The annual and 1qIR models.—Both the annual and

the 1qIR models have been described previously and

are only briefly reviewed here. The annual model was

described by Petrides (1949), and its performance was

evaluated by Eberhardt (1982). The 1qIR model was

described and evaluated by Ihde et al. (2008).

For the annual model, assume that catch I
j
in survey j

(for j ¼ 1, 2) is distributed as a Poisson random

variable, I
j
; Poisson(k

j
) and the mean k

j
is modeled

as k
j
¼qN

j
f
j
, where N

j
is the population size at the time

of survey j, f
j
is the sampling effort expended in survey

j, and q is the catchability coefficient. That is, survey

catch is proportional to abundance and sampling effort.

The assumption of Poisson-distributed survey data is

used throughout the work presented here. This

distribution was employed for its simplicity of

presentation and because it has been applied previous-

ly, both in the development of the IR method

(Eberhardt 1982; Chen et al. 1998b) and for parameter

estimation for the management of the southern rock

lobster fishery (Frusher et al. 1998, 2003).

Let N
2
¼ N

1
� R, where R is the removal between

surveys. The likelihood function, K
ann

, for the annual

model is

Kann ¼
Y2

j¼1

ðqNj fjÞIj e�qNj fj

Ij!
: ð1Þ

For the multiyear 1qIR model, we generalize the

notation by adding a second subscript to account for

year. Thus, N
ij

refers to the abundance at the time of

survey j in year i, and similarly for f
ij

and I
ij
. The

likelihood function, K
1qIR

, for the model for n years of

data is

K1qIR ¼
Yn

i¼1

Y2

j¼1

ðqNijfijÞIij e�qNij fij

Iij!
; ð2Þ

with N
i2
¼ N

i1
� R

i
, where R

i
¼ removal in year i.

The 2qIR model.—The development of the seasonal-q

model, 2qIR, follows that of the annual and 1qIR models

as described by Ihde et al. (2008), where survey catches

are assumed to be Poisson random variables. If the pre-

and postharvest catchability coefficients differ but are

constant over years, the likelihood function, K
2qIR

, for n

years of data is

K2qIR ¼
Yn

i¼1

Y2

j¼1

ðqjNij fijÞIij e�qjNij fij

Iij!
; ð3Þ

with q
j
referring to the catchability coefficient in season j.

A more generalized model could incorporate k surveys.

However, the corresponding removals must be known

for the time period between each pair of successive

survey indices. For simplicity, we assume that only two

surveys are conducted per year. For this case, 2qIR

requires a minimum of 2 years of pre- and postharvest

indices of abundance and different exploitation rates in at

least 2 years. After 2 years of data collection, we have

four survey indices that can be modeled as a system of

four equations with four unknown parameters, that is,

EðI11Þ ¼ q1 f11N1 ð4aÞ

EðI12Þ ¼ q2 f12ðN1 � R1Þ ð4bÞ

EðI21Þ ¼ q1 f21N2 ð4cÞ

EðI22Þ ¼ q2 f22ðN2 � R2Þ; ð4dÞ

where E denotes expectation. The four expected values

can be replaced with observed survey indices and the

four equations solved simultaneously to obtain moment

estimates of the parameters. Without contrast in

exploitation rates between years, the four equations

reduce to two sets of replicate observations, which is

insufficient to uniquely estimate four parameters.

Parameter estimates can be calculated analytically when

2 years of data are available:

N̂1 ¼
I11ðI12R2 � I22R1Þ

I12I21 � I11I22

ð5Þ

N̂2 ¼
I21ðI12R2 � I22R1Þ

I12I21 � I11I22

ð6Þ

q̂1 ¼
I12I21 � I11I22

I12R2 � I22R1

ð7Þ

q̂2 ¼
I12I21 � I11I22

I11R2 � I21R1

ð8Þ

where the carets denote estimates, I
ij
¼ catch in survey j

of year i, and the other symbols are as before. For clarity

of exposition, survey effort ( f
ij
) for equations 5–8 was

assumed to be constant over all surveys in both years

and, for convenience, was set equal to 1 (if survey effort

differed from 1, each I
ij

term would also be divided by its

corresponding f
ij
). When more than 2 years of data are

available, nonlinear maximization software is required to
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make parameter estimates. Degrees of freedom accumu-

late as years of data are added (Table 1).

Model Evaluation by Simulation

We performed three types of simulations. In the first,

the effect of exploitation rate (u) on model performance

was studied. In the second, we compared model

performance across a range of values for the catch-

ability coefficient (q) in the second surveys. For the

first two simulation types, 2 years of data were

analyzed. In a third type of simulation, the effect of

increasing the number of years of data on model

performance was studied.

Survey data were generated by Monte Carlo

simulation. The data used in all comparisons were

Poisson random variables, that is,

Iij ; Poissonðqj
� fij � NijÞ; i ¼ 1; 2; . . . ; n; j ¼ 1; 2;

and Ni2 ¼ Ni1 � Ri ð9Þ

and were created by application of the ‘‘rpois’’ function

in S-PLUS statistical software (MathSoft 2000).

Survey effort was assumed to be constant over all

surveys in all years and, for convenience, was set equal

to 1.

When the pre- and postharvest catch rates are similar

in magnitude, extremely large abundance estimates can

result for all IR models. When the postharvest survey

catch equals or exceeds the preharvest survey catch,

annual estimates of abundance are infeasible (i.e.,

negative or infinite) and multiple-year model estimates

may also be infeasible. Additionally, multiple-year

models that make parameter estimates by nonlinear

maximization may fail to converge on solutions.

Simulations with infeasible estimates and simulations

with convergence failures were counted, excluded from

further analyses, and defined as ‘‘unusable.’’ Chen et al.

(1998b) concluded that the mean and variance were

unreliable indicators of the performance of the

estimator because extreme values of the estimates

sometimes occur. Consequently, we used the median of

the usable estimates (i.e., those that were not

‘‘unusable’’) and the spread of the central 95% of the

usable estimates as the performance measures of the

estimators.

Model performance was evaluated in terms of (1)

the proximity of the median usable estimate to the

known abundance (as a measure of accuracy), (2) the

spread of the central 95% of the usable estimates (as a

measure of precision), and (3) the percentage of

unusable simulations (as a measure of the model

failure rate).

Exploitation rate variation.—The performance of

the 2qIR model was examined over a range of

contrasting exploitation rates between years when only

2 years of data were available. The exploitation rate

was fixed at 10% for all scenarios in the first year but

varied from 10% to 80% in the second year. Each

simulation was performed at three different levels of

contrast between pre- and postharvest catchability

coefficients. The simulation parameters were as

follows:

(1) population size prior to removals:

N11 ¼ N21 ¼ 1; 000; 000 animals

(2) catchability:

q1 f ¼ 2 3 10�4 and q2 f ¼ 1 3 10�4;
q1 f ¼ 1 3 10�4 and q2f ¼ 2 3 10�4; or

q1 f ¼ q2 f ¼ 1 3 10�4

(3) survey effort: f ¼ 1

(4) removals:

R1 ¼ u1
� N11 ¼ 100; 000

R2 ¼ u2
� N21 for

u2 ¼ 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8;

where ui ¼ Ri=Ni1 is the exploitation rate

(5) the number of years of data: n ¼ 2.

Survey catchability, q
j
, is multiplied by effort, f,

because it is the product qf that is of interest. Survey

data were simulated 10,000 times for each comparison.

Catchability variation.—The performance of the

2qIR model was evaluated over a range of contrasts

between pre- and postsurvey catchability coefficients

when only 2 years of data were available. Catchability

for the preharvest surveys was set at 1 3 10�4.

Catchability for the postharvest survey varied from

0.10 to 3 times the preharvest survey catchability but

was constant over years. To ensure that the model

requirements for contrast in exploitation rates between

years were met, in this type of simulation u was set to

0.2 for year 1 and 0.6 for year 2. The simulation

parameters were as follows:

TABLE 1.—Degrees of freedom for three index-removal

models that estimate abundance and exploitation—annual,

multiple year (1qIR), and a multiple-year model that allows

survey catchability to vary seasonally (2qIR). See text for

details; n is the number of years for which data are available.

Model
Number of

observations

Number of
parameters
to estimate df

Annual 2n 2n 0
1qIR 2n n þ 1 n � 1
2qIR 2n n þ 2 n � 2, for n � 2
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(1) population size prior to removals:

N11 ¼ N21 ¼ 1; 000; 000 animals

(2) catchability:

q1f ¼ 1 3 10�4

q2f ¼ ð1 3 10�5; 3 3 10�5; 5 3 10�5; 7 3 10�5;
9 3 10�5; 1 3 10�4; 1:1 3 10�4; 1:3 3 10�4;
1:5 3 10�4; 1:7 3 10�4; 2 3 10�4; 3 3 10�4Þ

(3) survey effort: f ¼ 1

(4) exploitation rate:

u1 ¼ 0:2
u2 ¼ 0:6

(5) removals:

R1 ¼ u1
� N11 ¼ 200;000

R2 ¼ u2
� N21 ¼ 600;000

(6) number of years of data: n ¼ 2.

Survey data were simulated 10,000 times for each of

the twelve catchability scenarios.

Additional years of data.—In the third type of

simulation, the performance of the 2qIR model was

evaluated for improvement as more years of data were

analyzed together and compared with the performance

of the annual and 1qIR models. Model estimates were

made with all three models over a range of contrasts

between pre- and postsurvey catchability coefficients

as described above for the second type of simulation,

except that the range of catchability variation in the

second survey was restricted to one-quarter to two

times that of the first survey. The exploitation rate for

years 3 to n (n � 3) was assumed to be moderate (u¼
0.3). Estimates for multiple-year models were made

using the ‘‘nlminb’’ function in S-PLUS. The simula-

tion parameters were as follows:

(1) population size prior to removals:

N11 ¼ N21 ¼ � � � ¼ Nn1 ¼ 1;000;000 animals

(2) catchability:

q1f ¼ 1 3 10�4

q2f ¼ ð2:5 3 10�5; 5 3 10�5; 7:5 3 10�5;
1 3 10�4; 1:25 3 10�4; 1:5 3 10�4; 2 3 10�4Þ

(3) survey effort: f ¼ 1

(4) exploitation rate:

u1 ¼ 0:2
u2 ¼ 0:6

u3 ¼ � � � ¼ un ¼ 0:3; n � 3

(5) removals:

R1 ¼ u1
� N11 ¼ 200;000

R2 ¼ u2
� N21 ¼ 600;000

Ri ¼ ui � Ni1 ¼ � � � ¼ 0:3 3 1;000;000 ¼ 300;000;
i � 3; 3 � i � n

(6) number of years of data: n ¼ 2, 3, or 5.

Survey data were simulated 1,000 times for each of

the seven catchability scenarios.

Application to Southern Rock Lobster

Study Site.—Survey and fishery removal data were

collected from 1996 to 2000 for a population of

southern rock lobster at a study site near Port Davey,

Tasmania (43.398S, 145.888E), by the Tasmanian

Aquaculture and Fisheries Institute in Taroona (Table

2). Both survey and fishery data were collected at

similar locations (the 7E2 block of stock assessment

area 8) and from similar depths (40–80 m).

Three fishery-independent surveys were performed

each year, commercial harvest and effort data being

documented for the times between surveys. Surveys

were performed during the first week of the fishing

season (the ‘‘spring’’ survey [early to mid-November]),

in midseason (late February to mid-March), and again

near the end of the season (the ‘‘fall’’ survey [mid-July

to mid-August]). Model estimates were made with each

of the IR models (annual, 1qIR, and 2qIR) using two

sets of data. Both data sets incorporated the spring

survey but differed as to which survey index was used

as the second required survey. One data set incorpo-

rated the midseason survey index as the second survey,

while the other incorporated the fall survey. The

relative performances of the models were compared for

each of the data sets used.

Model Choice.—Model performance with these data

was evaluated by two methods, a likelihood ratio test

and a diagnostic plot. A likelihood ratio test was

applied to decide which of the IR models (annual,

1qIR, or 2qIR) was most parsimonious (Miller and

Miller 1999) for the southern rock lobster data.

To test whether the annual model or the 1qIR model

is more appropriate, both equations (1) and (2) are

fitted to the data. For n years of data (n . 1),

h ¼ Krestricted

Kunrestricted

¼ K1qIR

Kann

; ð10Þ

and�2 � log
e
h approximates v

r
2 with r¼ n� 1 degrees

of freedom. The null hypothesis is that there is no

difference in catchability coefficients across years. If

the test fails to reject the hypothesis, the restricted

model (1qIR) is appropriate. If the hypothesis is

rejected, there is evidence that the catchability

coefficients differ among years and thus that the

unrestricted annual model is more appropriate.
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When applying a likelihood ratio test to determine

whether the 2qIR model is more appropriate than the

1qIR model, 1qIR is again the more restricted model.

The null hypothesis is that there is no difference

between the pre- and postharvest catchability coeffi-

cients. The test statistic is�2 � log
e
(K

1qIR
/K

2qIR
) but now

with 1 degree of freedom. If the test fails to reject the

hypothesis, 1qIR is again the more appropriate model.

Model choice was also evaluated with diagnostic

plots. If a model is effective in estimating biomass, (1)

biomass estimates should be strongly related (using R2

values) to preharvest survey catch rates and (2) a

regression of model abundance estimates on preseason

survey indices should have an intercept close to the

origin. Also, since the slopes of the regression lines

calculated for the diagnostic plots estimate the

reciprocal of the survey gear catchability (1/q), (3)

estimates of q calculated from the slope of the

regression line should also be consistent with estimates

of q from model outputs.

Model Sensitivity to Error in Removals.—The

method assumes that removals are known precisely.

Since parameter estimates are scaled entirely by the

magnitude of the removals, it was expected that any

error in removals would bias abundance estimates

proportionally. This was tested by adding 10% to each

removal before fitting to the model and then comparing

the resulting parameter estimates with those of the

original model estimates made from the actual data.

Results

Simulation Results

Exploitation rate variation.—The 2qIR model re-

sults were accurate, precise, and almost always usable

when there was moderate contrast in the range of

exploitation rates among years (i.e., ju
2
� u

1
j � 0.3),

regardless of the degree of contrast between the

catchability coefficients (Figure 1), relative to the

results of the annual model. With moderate exploitation

contrast and with only 2 years of data, the abundance

estimates of the 2qIR model were always more accurate

and precise than annual model estimates and were

seldom (,5% of the time) unusable. The performance

of the annual model, however, was very sensitive to

changes in the survey catchability coefficient and

model performance varied greatly among scenarios.

The median 2qIR model estimates were always more

accurate than those of the annual model when the

contrast between the exploitation rates of the 2 years

was at least 0.2, regardless of the degree of contrast in

catchability coefficients (Figure 1). The annual model

estimates were more accurate only when the catch-

ability coefficients were equal or the exploitation rate

was extremely high.

The 2qIR model estimates were most variable when

the simulated population was lightly (u ¼ 0.2) or

moderately (u ¼ 0.3) exploited, but the range of the

TABLE 2.—Survey catch rates, survey effort, and commercial removals for a southern rock lobster fishery in Tasmania. The

fishing season runs from mid or late October to August or September, so the ‘‘fished year’’ spans two calendar years. Scientific

surveys were conducted in the first week of commercial harvest (‘‘preharvest’’), in midseason (‘‘midyear’’ [March]), and again in

the last weeks of the season (‘‘postharvest’’). Commercial removal data are for time periods between the surveys.

Time of survey
or harvest interval

Fished year

1996–1997 1997–1998 1998–1999 2000–2001 2001–2002

Catch rate (lobsters/trap haul)

Preharvest 1.22 2.33 3.50 1.40 1.26
Midyear 0.35 0.61 1.44 0.44 1.06
Postharvest 0.03 0.22 0.36 0.20 0.16

Survey effort (trap hauls)

Preharvest 49 94 100 100 50
Midyear 99 100 100 100 50
Postharvest 98 150 100 100 50

Removals (kg)

Start of season to midyear 37,708 30,031 60,894 22,281 19,137
Start of season to year-end 45,476 57,894 81,214 37,654 27,683

TABLE 3.—Model comparison by the likelihood ratio test.

Models
Log

e
likelihood

objective value
Test statistic
(�2 � log

e
h)

df
(r)

v2 critical
value

(a
r
¼ 0.05)

Spring and midseason data

1qIR �6.8843
Annual �6.6929 0.3828 4 9.488
2qIR �6.8668 0.0350 1 3.841

Spring and fall data

1qIR �4.8178
Annual �4.7408 0.1540 4 9.488
2qIR �4.7525 0.1306 1 3.841
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central 95% of the 2qIR model estimates always

included the true abundance when u was greater than

0.1. Though the 2qIR estimates were variable, the

upper tails of the distribution of estimates were long,

and when the upper 10% of the estimates were

excluded the 2qIR estimates were always more precise

than the corresponding estimates of the annual model

(Figure 1).

The variability of the annual model estimates,

however, differed greatly for the three different

scenarios. The annual model estimates had virtually

no variability when preharvest catchability was double

that of postharvest catchability; however, the central

95% of the usable estimates never included the true

abundance (Figure 1A). When the catchability of the

second survey was double that of the first survey

FIGURE 1.—Comparison of the performance of two index-removal models—an annual model and a multiple-year model that

allows survey catchability to vary seasonally (2qIR)—for three sets of contrasting values for survey catchability. The symbols

show the medians of the estimates. The exploitation rate was fixed at 0.1 for all simulations in year 1 but varied among

simulations in year 2. Each vertical bar represents the central 95% of the usable estimates from 10,000 simulations of 2 years of

survey data. Ten percent of the usable estimates were above the horizontal hash marks on the bars. Panel groups (A–C) differed

in catchability between the pre- and postharvest surveys. Row (a) depicts abundance estimates. The true abundance is indicated

by the horizontal line in each plot; the curves for estimates of years 1 and 2 are slightly offset horizontally so that both are visible.

All abundance plots have the same scale except for the annual model plot of scenario (B). Row (b) depicts the percentage of

unusable estimates for each model. Only one line is drawn for the 2qIR model because the years were estimated simultaneously

and a failure for either or both years was counted as an unusable simulation.
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(Figure 1B), the central 95% bands of the annual

estimates were roughly an order of magnitude greater

than those for the other scenarios and the bands never

included the known abundance when the exploitation

rate was at or below 60%. When catchability was equal

for both surveys, the annual bands were wide at very

low exploitation rates but narrow when at least 30% of

the population was harvested in the second year

(Figure 1C).

The estimates of the 2qIR model were usable more

often (92% of the time) than those of the annual model

(80% for all simulations of year 2) when all scenarios

were combined. Most of the unusable 2qIR estimates

(81%) were observed when the exploitation rate

contrast was low (i.e., when the difference between

exploitation rates was �10%). When the exploitation

rate contrast was at least 20%, the percentage of the

2qIR estimates that were unusable never exceeded 12%
for any set of simulations.

Catchability variation.—The 2qIR model worked

well over a wide range of contrasts in catchability

coefficients between the pre- and postharvest surveys,

but the annual model was very sensitive to catchability

change (Figure 2). The 2qIR model estimates were

more accurate and precise over the entire range of

catchability ratios (q
2
/q

1
) examined than were those of

the annual model, and 2qIR model estimates were

almost always usable. In contrast, the annual model

estimates were more accurate, precise, and usable than

2qIR model estimates only when the catchability ratios

were close to unity.

The 2qIR model produced more accurate estimates

than the annual model when postharvest catchability

differed from preharvest catchability by a factor of 0.3–

3.0 (Figure 2). In a preliminary analysis, Ihde (2006)

demonstrated that accurate estimates were produced by

the 2qIR model for an even broader range of contrast

between pre- and postharvest catchability coefficients

(from factors of 0.3–10), but because the model

estimates stabilized when more than a threefold

increase was simulated, the simulation presented here

was limited to the threefold increase between survey

catchabilities seen in Figure 2. The 2qIR model

performed better when postharvest catchability was

greater than preharvest catchability than when the

opposite was the case. But even the most extreme

medians were only slightly below the true abundance.

In the worst-case scenario, postharvest catchability was

one-tenth that of preharvest catchability, but the

median estimates still were within 9% of the true

value. In all other cases, the median estimates were

within 2% of the true abundance.

In contrast, the median estimates of the annual

model were within 10% of the actual abundance only

when there was no change (or nearly no change) in

catchability between the pre- and postharvest surveys.

When the exploitation rate was low (u¼ 0.2 [year 1]),

the median annual model estimates differed from the

true value by about 30% when the pre- and postharvest

catchability coefficients differed. When the exploita-

tion rate was high (u¼ 0.6 [year 2]), the annual model

made accurate estimates (within 10% of known

abundance) more often, but only if the difference in

catchability coefficients was 10% or less.

The range of the central 95% of usable estimates of

both models was characterized by upper bounds that

were at least three times the magnitude of the lower

bounds (Figure 2). Though the precision of the 2qIR

model estimates varied somewhat over the range of

catchability ratios examined, the central 95% of the

estimates always contained the known abundance

(Figure 2). The variability of the 2qIR estimates was

greatest when preharvest catchability was greater than

postharvest catchability. This trend was especially

pronounced when the catchability ratio was less than

0.5. However, the variability of the 2qIR estimates was

relatively constant when catchability ratios were

greater than 1 (Figure 2b). Annual model estimates

were more precise than 2qIR estimates when the q-

ratios were less than 1. But when the catchability ratios

were less than 0.7 or more than 1.3 the central 95%
bands of the annual estimates never included the true

abundance (Figure 2b).

The estimates of the 2qIR model were almost

always usable; in contrast, slightly more than one-half

of the annual model estimates were usable (Figure

2c). Of 120,000 simulations analyzed with the 2qIR

model (catchability ratios from 0.1 to 3.0), only 1%
of the estimates were unusable. Most of the unusable

estimates of the 2qIR model (87%) were from the

lowest q-ratios examined (0.1 and 0.3). Twice as

many simulations were possible for the annual model

because each year of data was analyzed separately.

Of the 240,000 possible annual model estimates

made, 24% were unusable. The year under high

exploitation had more usable estimates (92%) than

did the year under low exploitation (60%). However,

no annual model estimates were feasible for catch-

ability ratios of 2 or more when the exploitation rate

was low (0.2) or, in a preliminary analysis, for ratios

of 4 or more when the exploitation rate was high (0.6;

Ihde 2006).

Additional years of data.—With 5 years of data, the

2qIR model estimates were more accurate and precise

than those of the other IR models examined in this

scenario; the 2qIR model estimates were almost always

usable (Figure 3). Even with 5 years of data, however,

the 1qIR model estimates were more accurate, precise,
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FIGURE 2.—Comparison of the performance of the annual and 2qIR models using 10,000 simulations of 2 years of data.

Performance is compared over a range of seasonal change in the survey year catchability coefficient. Catchability in the first

survey was 0.0001 in both years; catchability in the second survey was the same for both years in any one simulation but varied

from 0.00001 to 0.0003 among scenarios. The panels in row (b) present the same results as those in row (a) but at a finer scale.

In rows (a) and (b) the performance indicators are the median estimates (symbols) and the width of the intervals containing 95%
of the usable estimates (vertical lines); in row (c) the performance indicator is the percentage of unusable simulations. Ten

percent of the usable estimates were above the horizontal hash marks on the vertical lines. The exploitation rates were 20% in

year 1 (solid lines, filled symbols) and 60% in year 2 (dashed lines, open symbols). The curves for years 1 and 2 are offset

slightly so that both estimates are visible. The horizontal lines in rows (a) and (b) indicate the true abundance.
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and usable than the 2qIR model estimates only when

the catchability ratio was close to unity.

The range of the central 95% of 2qIR estimates was

wider when only 2 years of data were available than

when 3 or 5 years were available (Figure 4). The

improvement gained by using 5 years of data instead of

3 was marginal. The performance of the annual model

shown in Figure 3 is representative of the performance

of this model with any number of years of data because

the estimate is made independently for each year of

data. With 2 years of data, however, the 1qIR model

estimates were more accurate and usable a greater

proportion of the time than the 1qIR results shown in

Figure 3, but overall the patterns of the estimates were

similar (Figure 5).

Application to Southern Rock Lobster

Parameter estimates.—The 2qIR model predicted

lower exploitation rates and catchability coefficients

and considerably higher biomass than did the other

models (Figure 6). All of the 2qIR model estimates

appeared reasonable and were similar, regardless of

which data set was fit to the model. However, the

patterns of the exploitation estimates of the annual and

1qIR models differed considerably, depending on

whether the midseason or fall survey data were used

in the analyses. Moreover, the exploitation rate

estimates of both the annual and 1qIR models were

unreasonably high for estimates based on data that

included the midseason surveys. Both the annual and

FIGURE 3.—Comparison of annual, 1qIR, and 2qIR model performance with 5 years of simulated data. Seven scenarios are

shown that varied in terms of the catchability coefficient of the second survey. Each scenario was simulated 1,000 times. The

curves for the different years are offset slightly so that all of them are visible. Row (a) depicts abundance estimates for each

model. The median estimates for individual years are represented by circles (low-exploitation year [u ¼ 0.2]; dashed line) or

triangles (high-exploitation year [u¼ 0.6]; dash–dot line). The diamonds represent averages of the medians of the 3 years with

moderate exploitation (u¼ 0.3; solid line). The vertical lines extending from the medians represent the central 95% of the usable

model estimates. Ten percent of the usable estimates were above the horizontal hash marks on the vertical lines. Row (b) depicts

the percentage of unusable simulations for each model.
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1qIR models predicted that more than 100% of the

population was harvested in 2 of the 5 years of data

(Figure 6A). Though the 2qIR model estimates were

also high at the beginning of the data set (80% when

the midseason survey was used, 91% when the fall data

were used), the 2qIR model estimates from both data

sets predicted a steady decline in the exploitation rate

during the next 4 years (Figure 6). The range of

contrast in exploitation rates among years was

approximately 0.4 when estimates of the 2qIR model

were made with either data set. According to

simulation results (Figure 1), this was more than

enough contrast for the 2qIR model to work well. The

2qIR model almost always estimated lower catchability

coefficients than the other models and predicted a more

than 70% decrease in catchability between the spring

and fall surveys. Correspondingly, the 2qIR model

estimates of abundance were much higher than those

predicted by the other models. In 1998, the 2qIR model

abundance estimates from both data sets were about

50% higher than those of the annual and 1qIR models.

Model choice.—A likelihood ratio test found that the

most parsimonious model was 1qIR regardless of

which data set was analyzed (Table 3). Diagnostic plots

and the occurrence of infeasible estimates (exploitation

rate estimates .1.0) with the 1qIR model, however,

suggest that the 2qIR model performed best (Figure 7).

In addition, an examination of likelihood ratio test

(LRT) statistics calculated from simulation results

presented earlier (from Figure 3) show that the test

was relatively insensitive to changes in the catchability

coefficient between surveys (Figure 8), even when the

performance of the 1qIR model was poor relative to

that of the 2qIR model (Figure 3).

Diagnostic plots of the estimates made from the

midseason data (Figure 7A) showed that although both

the 1qIR and 2qIR model estimates of abundance had

strong relationships with the preharvest survey catch

rate (R2 values were 0.88, and 0.92, respectively), the

FIGURE 4.—Comparison of 2qIR model performance with (A) 2, (B) 3, and (C) 5 years of data. Model performance improves

with a third year of data but is similar with 3 or 5 years. See Figure 3 for additional details. Horizontal dashed line is included to

facilitate comparison among panels in top row.
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annual model estimates were only weakly related to the

preharvest survey catch rate (R2¼ 0.06). The intercepts

for both the 1qIR (8,121) and 2qIR models (8,093)

were similar and very close to the origin for the

midseason data, but the annual model intercept was

over 50,000 kg.

When fall survey data were fit to each of the models,

all model estimates of abundance (Figure 7B) had

strong relationships with the preharvest survey catch

rate (R2 values were 0.94, 0.95, and 1.00 for the annual,

1qIR, and 2qIR model estimates, respectively), but the

2qIR model demonstrated the strongest relationship.

The intercepts were similar for the annual (11,679) and

1qIR models (10,415), but that of the 2qIR model

(3,698) was the closest to the origin.

The equations for the regression lines were as

follows:

N̂ann-mid ¼ 10;099 � I1 þ 50;403; ð11Þ

N̂1qIR-mid ¼ 25;647 � I1 þ 8;121; ð12Þ
and

N̂2qIR-mid ¼ 38;584 � I1 þ 8;093 ð13Þ
for the midyear data and

N̂ann-fall ¼ 22;484 � I1 þ 11;679; ð14Þ

FIGURE 5.—Comparison of 1qIR model performance with (A) 2 years and (B) 5 years of data. The performance of the model

deteriorates somewhat as more years of data are added. See Figure 3 for additional details. Horizontal dashed line is included in

top row to facilitate comparison between panels.
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N̂1qIR-fall ¼ 23;410 � I1 þ 10;415; ð15Þ
and

N̂2qIR-fall ¼ 39;442 � I1 þ 3;698 ð16Þ
for the fall data.

The slope of the regression line estimates the

reciprocal of survey gear catchability (1/q) for the

annual and 1qIR models. The estimates for q, then,

using the midseason data were 9.9 3 10�5, 3.9 3 10�5,

and 2.6 3 10�5 for the annual, 1qIR, and 2qIR models,

respectively. When the fall data were used instead, the

annual, 1qIR, and 2qIR model estimates of survey gear

catchability were 4.4 3 10�5, 4.3 3 10�5, and 2.5 3

10�5, respectively.

Model sensitivity to error in removals.—Error in

removals resulted in a proportional, added error in

abundance estimates that was similar for the annual,

1qIR, and 2qIR model estimates (10% in all cases for

all models). The added error to catchability coefficients

was negative and nearly proportional, but the error was

slightly dampened for estimates of this parameter

(�9.1% in all cases for all models). Estimates of the

exploitation rate were not biased because these can be

made without removal data, requiring only survey

indices of the population abundance before and after

the removals take place (Hoenig and Pollock 1998).

The relevant expression for the exploitation estimate is

û ¼ R

N̂
¼ ðI1=f1Þ � ðI2=f2Þ

I1=f1
¼ I1 � I2ðf1=f2Þ

I1

: ð17Þ

Discussion

Model Evaluation by Simulation

The 2qIR model was more accurate and precise than

the annual model, and the results were usable with

almost all simulated data when the exploitation rate

differed by at least 0.3 between two years (not

necessarily consecutive), regardless of the contrast in

catchability coefficient between the pre- and posthar-

vest surveys (Figure 1). In contrast, the erratic

performance of the annual model with the same data

is a consequence of the violation of the annual model

assumption of constant catchability. When this as-

sumption is met (Figure 1C), the annual model

performs relatively well. When catchability is lowered

FIGURE 6.—Estimates of abundance, catchability coefficient, and exploitation rate for two sets of southern rock lobster fishery

data. The dotted line in plots of exploitation rate, which indicate 100% exploitation, are included for reference.
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in the second survey, the model also appears to perform

well (i.e., estimates are highly precise and 100% of the

simulations are usable) because the lower catches

observed due to lower catchability are incorrectly

accounted for by the model as lower abundance (thus,

the negative bias seen in Figure 1A). However, when

survey catchability is lower in the first survey (Figure

1B), catches in the first survey may be smaller than or

similar in magnitude to those of the second survey, a

situation that results in a high percentage of unusable

simulations. In this scenario, the annual model cannot

produce estimates as accurate and precise as those of

the 2qIR model until 70% or more of the population is

harvested.

Because the 2qIR model estimates were usable a

greater portion of the time, more 2qIR model estimates

were made using problematic data (i.e., survey catches

that were close in magnitude or simulations in which

the catch of the second survey exceeded the catch of

the first survey). As a result, the 2qIR model was

somewhat disadvantaged when the accuracy and

precision of model estimates were compared directly

with those of the models that excluded more of the

problematic data, and the percentage of unusable

estimates was an important factor in assessing overall

model performance. Except in the most extreme

scenarios (e.g., the difference between exploitation

rates between two years was ,0.3 [Figure 1] or the

catchability ratio was ,0.3 [Figure 2]), the 2qIR model

performed well in spite of the inclusion of these

problematic data.

Though the performance of the 2qIR model was best

when postharvest catchability was greater than prehar-

vest catchability in the simulations presented here

(Figures 2–4), the difference is thought to be due to

simulation design rather than being a characteristic of

model performance. Ihde (2006) demonstrated that the

performance of IR models improves substantially with

a higher qf product and thus higher survey catches. The

value of qf in the preharvest surveys was constant for

all simulations. Thus, the performance of the 2qIR

model at higher postharvest catchabilities (and conse-

quently at higher qf values) was improved. Similarly,

the performance of the model was poorer at lower

postharvest catchabilities (i,e., catchability ratios ,1)

FIGURE 8.—(A) Performance of the 1qIR model (from row

[a], column 2 of Figure 3) as a function of the catchability

ratio and (B) the proportion of simulations for which the

likelihood ratio test (LRT) failed to reject the 1qIR model. The

median model estimate was only accurate when the model

assumptions were met and the catchability ratio was 1.0 in this

simulation. The LRT failed to select against the 1qIR model

the majority of the time until there was a 50% change between

the catchability coefficients of the two surveys. In (A) the

horizontal line indicates the true abundance; in (B) horizontal

lines indicate the proportions 0.20 and 0.025, at which an LRT

determined that the 1qIR model was more parsimonious than

the 2qIR model 40% and 5% of the time, respectively.

FIGURE 7.—Regressions of model abundance estimates on

the preharvest survey catch rates of the corresponding years.

The dotted lines indicate the y-intercepts for the three models.

The regression curves shown in panel (A) were based on data

collected in spring and midseason surveys, those in panel (B)
on data collected in spring and fall surveys.
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owing to the lower qf values at these catchabilities,

which also imply lower survey catches.

The performance indicators for the 2qIR model

improved when a third year of data was added to the

data set. However, model performance with 5 years of

data was similar to that with 3 years. In contrast, the

performance of the 1qIR model deteriorated somewhat

when years were added (Figure 5). The 1qIR model is

based on the assumption that catchability is constant.

So, as more data that violate the assumptions of the

model are added to the data set, the chances of getting

problematic data (i.e., a higher catch rate in the second

survey or one similar in magnitude to that of the first

survey) increase.

The only instances when the annual or 1qIR models

outperformed the 2qIR model were when catchability

was constant (or nearly constant) between surveys and

the exploitation rate was very high (60% or more). In

such situations, use of the simpler models is appropri-

ate and the 2qIR model suffers a penalty in variability

for unnecessarily estimating an extra catchability

parameter.

An assumption of the 2qIR model is that the year-to-

year change in catchability coefficients is unimportant,

but this is not always the case. Ihde et al. (2008)

examined the effect of a strong temporal trend on the

estimates of the 1qIR model. They found that with even

an extreme trend in catchability (a geometric increase

of 15% each year over 10 years of simulated data), the

error in the median model estimates did not exceed

60%. It seems likely that similar trends in catchability

would affect the estimates of the 2qIR model similarly,

but this still requires investigation.

Application to Southern Rock Lobster

Though the likelihood ratio test suggests that the

1qIR model was the most parsimonious in this

application, diagnostic plots and the patterns of the

model estimates suggest that the 2qIR model per-

formed best for this population of southern rock

lobsters. Moreover, an examination of the relative

insensitivity of the LRT in simulation (Figure 8)

suggests that the LRT was not useful in determining

the most parsimonious model in this application.

An examination of the LRT statistics calculated from

the simulation results (from Figure 3) shows that the

test was relatively insensitive to changes in the

catchability coefficient between surveys (Figure 8),

even though the 1qIR model was shown to perform

poorly (i.e., the estimates never included the true

abundance) with only a small change of catchability in

simulation. Likelihood ratio test statistics were calcu-

lated from objective values resulting from 1qIR and

2qIR model runs for data from the third simulation,

which considered model performance with additional

years of data.

Diagnostic plots and the patterns of the model

estimates suggest that the 2qIR model performed best

for this population of southern rock lobsters. When

the midseason data were used, diagnostic plots

showed only a slight improvement in the performance

of the 2qIR model over that of the 1qIR model (Figure

7A). However, an examination of the patterns of

parameter estimates demonstrated a distinct improve-

ment in the performance of the 2qIR model over that

of the other models (Figure 6). The unreasonable

exploitation estimates of the annual and 1qIR models

suggest that both of these models performed poorly

with the midseason data. When the fall data were

incorporated instead of midseason data (Figure 7B),

the intercept of the 2qIR model was closer to the

origin than those of the other models. And, though all

model abundance estimates had strong relationships

with the survey catch rate, the 2qIR model estimates

were directly related (R2 ¼ 1.0) to it. Additionally,

about 5% more of the variation in the 2qIR abundance

estimates was explained by the catch rate than was

explained for the other models. The estimate of the

survey gear catchability coefficient for the 2qIR

model, which is predicted by the reciprocal of the

slope of the regression line, corresponded closely to

model estimates for preharvest catchability regardless

of which data set was analyzed, as one would expect

if the model were performing well. However, the

slope estimates of survey catchability for the annual

model were nearly three times greater than that of the

mean annual model estimate made from the mid-

season data and more than 25% greater than the

corresponding estimate from the fall data. Slope

estimates made with the 1qIR model were more

consistent with model estimates than were those of the

annual model, but these estimates were still 18%
higher for the midseason data and 23% higher for the

fall data. The inconsistencies of the annual and 1qIR

model estimates of survey catchability suggest poorer

model performance relative to the 2qIR model.

The closed-population assumption for southern rock

lobsters in southern Tasmania appears reasonable

because the animals here move little (Gardner et al.

2003), they recruit once a year (by moulting) prior to

the onset of the fishing season (Frusher 1997), and their

natural mortality is estimated to be quite low (0.10–

0.12/year; Punt and Kennedy 1997; Frusher and

Hoenig 2003).

The contrast in exploitation rates required by the

2qIR model seems likely to be met for this data set.

Independent estimates of exploitation rates are not

available for this population of southern rock lobsters,
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so the minimum exploitation contrast in this data set

cannot be verified. However, a substantial management

change occurred during the 5 years of data analyzed

here (1996–2000) that seems likely to have resulted in

a corresponding change in the exploitation rate. In

1998, an individual transferable quota (ITQ) system

was implemented in Tasmania to reduce the catch of

southern rock lobsters. After only 2 years of the ITQ

system, a substantial (29%) decrease in effort was

documented (Ford 2001). Thus, it seems reasonable to

expect that this population experienced at least a 0.2

difference in exploitation rates (the minimum contrast

suggested by the simulations; Figure 1) between at

least 2 of the 5 years of data analyzed here.

Recent work indicates that use of either the annual or

1qIR model may be inappropriate for the data set that

included the fall surveys. Ziegler et al. (2003) predicted

that the relative catchability of southern rock lobsters in

this region decreases markedly after the midseason

survey is conducted and that catchability at the time of

the fall survey is distinctly lower than that of the spring

and midseason surveys. The 2qIR model results

presented here appear to support the conclusions of

Ziegler et al. (2003). The 2qIR model estimated that

catchability declined by more than 70% between the

spring survey in November and the fall survey in

August. If this predicted change in catchability is real,

it is important to take it into account. Our simulation

results suggest that when the catchability ratio (q
2
/q

1
) is

less than 1 the single-q models will substantially

underestimate abundance (Figures 2, 3). When the IR

models were applied to the data set that included the

fall data, the 2qIR model predicted a catchability ratio

of 0.27. Accordingly, abundance estimated with the

2qIR model was 44% higher and exploitation was 28%
lower, on average, than corresponding estimates of the

annual and 1qIR models because those models could

not accommodate the catchability change. Previous

studies of different populations of this species have

also documented the importance of accounting for

seasonal catchability change (Ziegler et al. 2002;

Frusher and Hoenig 2003). Thus, it appears likely that

the 2qIR model is the most appropriate model to use in

the stock assessment of this population, regardless of

which data set is used.

If there is any doubt as to which model to apply, our

results suggest that the 2qIR model will probably give

the most accurate estimate. Though the estimates may

suffer slightly in precision if a simpler model is truly

appropriate, the 2qIR model estimates will not have the

serious biases that result from applying either the

annual or the 1qIR model when their assumption of

constant catchability is not met.
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