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The Schaefer surplus production model relates equilibrium yield to fishing effort and can be fitted using just
information on catch and fishing effort. Sometimes, the fitted model predicts a maximum sustainable
yield (height of the parabola) that is clearly unrealistic. In this case, one may wish to use prior information
on maximum sustainable yield either to constrain the height of the parabola or to provide a prior distribution
for Bayesian estimation. To construct a Bayes estimator, one would generally specify a noninformative
prior on the residual error variance and, possibly, on the width of the parabola; the prior distribution for
height could be obtained by examining fisheries for similar stocks or species on a per unit area basis.
Another possibility is to use an empirical Bayes estimator when data from several fisheries (e.g., individ-
ual lakes) are available for several years. The methodology is illustrated on catch and effort data for big-
eye tuna (Thunnus obesus) and Dungeness crab (Cancer magister). The approach can be extended to
other fishery models, including nonequilibrium production models. The prior distribution parameters can
be allowed to depend on covariates.

Le modele de production excédentaire de Schaefer met en relation le rendement d’équilibre et |'effort
de péche, et on peut I'ajuster en utilisant uniquement des données sur les prises et I’effort de péche.
Parfois, le modele ajusté prévoit un rendement maximal soutenu (hauteur de la parabole) nettement irréaliste.
Dans ce cas, on peut alors se servir des données a priori sur le rendement maximal soutenu pour limiter
la hauteur de la parabole ou pour établir une distribution a priori servant a obtenir une estimation bayesienne.
Pour créer un estimateur bayesien, il faut généralement préciser des données a priori non informatives sur
la variance de l'erreur résiduelle et, probablement, sur la largeur de la parabole; on peut obtenir la dis-
tribution a priori concernant la hauteur en étudiant des types de péche avec des stocks ou des espéces sem-
blables par unité de surface. On peut également utiliser un estimateur bayesien empirique lorsqu’on dis-
pose de données sur plusieurs péches (p. ex. lacs individuels) pendant plusieurs années. On illustre la
méthode au moyen de données concernant les prises et I'effort de péche du thon ventru (Thunnus obesus)
et du Crabe dormeur (Cancer magister). L'approche peut étre appliquée a d'autres modeles de péche, y com-
pris des modeles de production non a I’équilibre. Les paramétres de la distribution a priori peuvent étre
congus pour dépendre de covariables.
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abolic surplus production model of Schaefer (1957)

is still widely used for fisheries assessment, particu-
larly in cases where little information exists about the fish-
ery. The requisite data are observations on (equilibrium)
catches and the corresponding fishing efforts over a number
of years. Equilibrium catch in year j is assumed to be given
by the dome-shaped relationship

Despite, or perhaps because of, its simplicity, the par-

() y=Bx — Baxi+¢

where y, is the observed catch (at equilibrium) in year j cor-
responding to the fishing effort of x;, B, and B, are regres-
sion coefficients assumed to be positive, and ¢, is a random
error with expectation zero. The height of the parabola is
known as the maximum sustainable yield (MSY). Several
other production models have been devised which also have
minimal data requirements (e.g., Fox 1970; Csirke and Caddy
1983; Schnute 1989). The methods developed in this paper
can be modified for these models in a straightforward manner.
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It sometimes happens that the predicted height of the
parabola is unreasonable. In this case, one may need to use
“prior” information from similar situations to improve the
estimation (see Walters 1986 for an interesting discussion
of the basis for this). Information will rarely be available
on the likely values of B, and B, (cf. Hoenig and Hoenig
1986). However, there may be information on the height of
the parabola. In many freshwater systems, the MSY can be
estimated, albeit crudely, from empirically derived models
such as the morphoedaphic index (cf. Ryder 1965; FAO
1980; Hanson and Leggett 1982; and references therein).
Attempts have also been made to summarize yields per
unit area that can be expected for various marine systems
(Marshall 1980; Garcia and LeReste 1981, p.161-163). The
yields of similar stocks or species can be expressed on a
per area basis and plotted against effort per unit area to
obtain a “composite” stock production model. The height
of the composite curve provides a rough idea of the MSY per
unit area (Munro and Thompson 1973; Marten and Polovina
1982; see also Hoenig et al. 1987 for a recent review).

1823



Information on the width of the parabola for a given stock
may be problematical. In some cases, however, comparisons
may be made with similar stocks in other lakes or bays.

To utilize prior information on the MSY, it is convenient
to reparameterize equation (1) in terms of the height and
width of the parabola. Let & be the height and w the half
width at y = O; thus, w is the fishing effort producing the
MSY, often referred to as f,,,. Then, equation (1) can be
written as

2h h

(2) yj:ij—w—2xj+e

In this paper, we begin by fitting the production model by
fixing the height. This leads to consideration of a Bayes
estimator. Empirical Bayes estimators are then described
for multiple stocks by way of the computational procedures
of Dempster et al. (1981) which make use of the expectation—
maximization (EM) algorithm. Finally, the methodology is
illustrated with the Schaefer model applied to a bigeye tuna
(Thunnus obesus) stock (Bayes estimates) and to multiple
stocks of Dungeness crab (Cancer magister) (empirical Bayes
estimates).

Bayesian estimation has not been commonly used in fish-
eries work, there being perhaps two dozen examples in the
literature. The underlying philosophy of Bayesian estima-
tion differs fundamentally from that of classical inference and
there exists a substantial degree of controversy over the
meaning of the differences. The interested reader is referred
to Press (1989) for an introduction to Bayesian inference
and to Barnett (1982) for a thoughtful comparison of the
approaches. The use of Bayesian statistics in a fisheries
context is discussed in Walters (1986) and Walters and
Ludwig (1994).

Methodology

Fishing Effort (f,,,,) for Given MSY

Suppose that the MSY, 4, is known. The least-squares
estimate of the corresponding fishing effort, W, is then
obtained as the solution of the cubic equation

3) 3Zy x;—w? Zx (y;+2h

j=1

n n
- 3 4_
+3wh Y x?-h) x1=0
j=1 Jj=1
where n is the number of years of data. This equation can be
written as

aw3+3a,w?+3a;w+a,=0.

Let H=a,a; — as, G = ala, — 3a,a,a, + 243, and A = G* +
4H3. If A > 0, there exist one real and two complex roots.
In this case, Cardan’s solution of the cubic is convenient;
specifically

) W=

where

1824

Let S* denote the residual sum of squares obtained by
estimating (3, and 3, and, thus, A and w, by ordinary, uncon-
strained least squares, and let S,, denote the res1dua1 sum
of squares obtained by assuming h known. S,, cannot, of
course, be less than $2. We may readily determine the range
of values for h, [k, h,] say, for which Sf/S2 <1 + 3, where
d is some predefined (small) value, for example 0.1. For
each chosen value of A, there is, by equation (4), a corre-
sponding value of w. We may thus demarcate a set of sus-
tainable yields and corresponding fishing efforts for which
the residual sum of squares is inflated over that obtained
by the unconstrained least squares fit by at most 1008%.
We may then ask whether such MSYs, which, in this sense,
are consistent with the data, are believable. Conversely, we
may judge whether MSYs that we deem feasible are con-
sistent with the data.

Extending this idea, we might place a prior distribution on
the MSY. Through equation (4), this will impose a distrib-
ution on the corresponding fishing effort. If the relation-
ship between % and w turns out to be essentially linear, then
the distribution imposed on w will have essentially the same
form as that assumed for A (see the example below).

Bayesian Estimation

The idea of placing a prior distribution on & leads then
to consideration of Bayesian estimation per se.

Assume in equation (2) that the ¢; are independent normally
distributed random variables with mean zero and variance o2,
The likelihood of the data is then

1 15
5) A= 1L y(, 2k
®) [ow/ﬁ} exp[ 202 j:l(yj

h 2
2
+w—2x,) :

As noted above, we may well have sufficient informa-
tion to place a prior dlstrlbutlon on h but feel unable to place
prior distributions on w and a’. Bayesian estimation, how-
ever, requires priors on all unknown parameters So-called
noninformative priors can be placed on w and o”. According
to Seber and Wild (1989), the criteria followed by Box and
Tiao (1973) lead to the Jeffreys’ nomnformatlve prior which
here, under the assumption that w and o? are independent, is
glven by the product of I7,(c)I'"? and I1,(w)I"”* where, with

= log(A),

2
1, @)= E[—g—ﬂ

92L
]2 (W)=E|:-(:)—w—2:l

and, in each, the other parameters are treated as known.
Thus

2n -2
I @=—x0o
1 0=23

Zx (x; —w)2

wo

__4h? N 2 2o
12(w)—0_2W6jZ=lxj(xj—w)

Note that if, as seems reasonable in this and many situa-
tions, the fishing gear is not saturated even under the highest
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catches, » may be assumed to be independent of w. Then, fol-
lowing Seber and Wild (1989) the posterior probability den-
sity of h, w, and o, P(h,w,oly), is proportional to

1 S S y2 2
j=1

(X - w2
X 3 rh

where §j~%xj—ix] and p(h) denotes the prior prob-
w

ability dens1ty of h chosen by the analyst. The above can
be integrated over o to eliminate o, whence
6) Ph,wly)
1/2
1 dxi(l—x;/w)?
s " ph)
- 2,2/ 2
[Z(yj 2hx /w+h?xilw )]

=& (h,w), say.
Next, £(h,w) can be integrated numerically over 2 and w to
determine the constant necessary to obtain a proper posterior
probability density. Let 1/k = [ [§ &(h,w)dh dw; then the
posterior joint density for 2 and w is

@) Ph,wly) =k&(,w).

The marginal posterior density for 2 can be obtained by
integrating equation (7) over w; thus

Phly) = J':P(h,wly)dw

and the mean of the posterior marginal density is a Bayes
estimator of the maximum sustainable yield, i.e.,

hy= [ hPhIy)dh.

The 100(1 — a)% credibility interval (the Bayesian analog
of the confidence interval) is (h;,h,) where

j(:" Phly)dh=al2
[” Piydn=ar2.
hy

The Bayes estimate for the corresponding fishing effort, w,
and its credibility interval are obtained from equation (7)
in a parallel manner.

Credibility intervals describe the (posterior) degree of
belief of the parameter falling in the interval, given the data
(Press 1989). Bayesian statisticians find this a natural inter-
pretation for an interval estimate. They point out that, in
contrast, the traditional confidence interval has an awkward,
frequentist interpretation of being a random interval which,
if constructed many times, will include the true value of
the parameter a specified percentage of the times.

If it should happen that substantial information exists
concerning the fishing effort, w, that will result in catches
equal to the MSY (i.e., ), then one may wish to specify
an informative prior distribution for w. The Bayesian esti-
mation procedure described above is easily modified to
accommodate an informative prior on w, say g(w). The pos-
terior probability density of h, w, and o, P(h,w,oly) is then
proportional to
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o.nl+1 exXp L_Z(yj - )A’j)2/20'2)P(h)4(W)
j=l

where all symbols are as previously defined. This expression
can again be integrated over o to eliminate o. The result
is proportional to the joint posterior density of # and w and
can be converted to a proper probability density by multi-
plying by a constant determined as for equation (6). The
determination of marginal posterior densities, Bayes esti-
mates, and credibility intervals proceeds as for the case
when the prior distribution for w was noninformative.

Empirical Bayes Estimation

Empirical Bayes methods are useful when one has sev-
eral series of observations on similar situations or similar
systems. For example, there may be observations on a stock
in each of several similar lakes. If information is strong for
a particular stock, the empirical Bayes estimates will be lit-
tle affected by consideration of information from other
stocks. However, if there is little information for a particu-
lar stock, consideration of information from other stocks
will cause the estimates for that stock to be pulled towards
the mean estimates of all stocks. If information is very weak,
these “shrunken” estimates may well be better estimates for
the particular stock than the estimates based on the infor-
mation from that stock only.

Let Yij and Xy be the catch and effort, respectively, for fish-
ery (e.g., lake) iinyearjfori=1,2, ..,landj=1,2, .., n
The analogous model to equation (1) is

Bll i B2l'x +€

where random error terms, €, are, again, independent nor-
mally distributed random variables with mean zero and vari-
ance o’

Suppose, now, that production parameters for the vari-
ous stocks arise from a bivariate normal distribution with
mean (u,,4,) and covariance matrix %. The model can be

rewritten
(8 ylj=p,1xij+(Bli— }Lz)xé

+€ij'

Ml)xij_uzx,]—(ﬁzi_

Here, p, and p, are regarded as fixed effects, i.e., intrinsic to
the species, while B,; — p, and B,, — p, are regarded as
random effects, i.e., varying over the different stocks of the
species, with bivariate N(0,%) distribution.

Dempster et al. (1981) showed that Bayes1an estimation of
the B,; and B, is straightforward when ¢ and 3 are known.
Indeed, estimates of the posterior distribution of B,; and B,
can be obtained from ordinary least squares algorithms. In the
present case, o and ¥ are not known.

The EM algorithm is a useful procedure for finding max-
imum likelihood estimates when the data are incomplete. In
this case, the data are incomplete in the sense that the suf-
ficient statistics for o and 3, involve not only the observa-
tions, y;, but also the unknown regression coefficients, 3,; and
B, The EM al% orithm proceeds as follows. Begin with an ini-
tial guess of ¢“ and 2. Given these compute the expected
value of the sufficient statistics for o and 3 (the expectation
step) — this involves computing Bayes estimates of the
regression coeff1c1ents ,; and B,; conditional on the [current]
values of o and 3. Given these estimates of the sufficient sta-
tistics, it is an easy matter to compute maximum likelihood
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FIG. 1. Scatter plot of catch versus fishing effort for bigeye tuna
from the Atlantic Ocean (from Miyabe 1989). Also shown are the
Schaefer model (parabola) fitted by ordinary least squares and by
the Bayesian method with an N(80,100) prior of height (k) and
noninformative priors on half-width (w) and the residual vari-
ance (o?).
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Fic. 2. Relationship between the imposed height (k) of the
parabola fitted to the bigeye tuna data and the resulting esti-
mated half-width (w). Note that the relationship is nearly linear
for imposed heights greater than approximately 65 t.

estimates of 2 and ¥ (the maximization step). The new values
of % and ¥ can then be used to begin the next cycle of iter-
ation, i.e., to update estimates of the expected values of the
sufficient statistics so that new maximum likelihood esti-
mates of o and 3 can be obtained, and so forth until con-
vergence is achieved. Note that the empirical Bayes estimates
of the regression coefficients are obtained automatically as a
by-product of the algorithm. Computational details are given
in the Appendix.

Examples

Optimal Fishing Effort for Given MSY

Catch and effort data for bigeye tuna in the Atlantic Ocean
have been tabulated by Miyabe (1989). The observations
fall on the ascending (left) limb of the parabola (Fig. 1).

The ordinary least squares (unconstrained) estimates of
the parameters are MSY, & = 64.7 X 10° ¢, and corresponding
effort, w = 3.75 X 10® hook-days, with a residual sum of
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FiG. 3. Relationship between the imposed height (4) of the
parabola fitted to bigeye tuna data and the resulting residual
sum of squares.

squares of 1075.9 (Fig. 1). Computation of constrained esti-
mates, i.e., values of the effort for selected values of the
MSY (from equation (4)), shows that w is a nearly linear
function of the imposed height, &, for k greater than approx-
imately 65 X 10° t (Fig. 2). Accordingly, it is relatively
easy to translate one’s feelings about the probable value of
MSY into feelings about the associated effort. In particu-
lar, one could place a probability distribution on # and deter-
mine the consequent distribution on w.

Suppose now that we wish to consider estimates that
inflate the (unconstrained) sum of squares by at most 10%,
i.e., find constrained estimates so that the residual sum of
squares <1183.5. This is achieved with any A4 in the range
(60.5 X 103,70.0 X 103) (Fig. 3). By equation (4), the cor-
responding efforts fall in the range (3.40 X 10%,4.65 X 10%).

Bayesian Estimation

The same data are used to illustrate Bayesian estimation
per se. Noninformative (Jeffreys’) priors are assumed for
w and o whereas, for illustrative purposes, a normal prior,
N(80,100), is assumed for A (note that the prior distribu-
tion should be specified without reference to the data).
From equation (7) the Bayes estimate of the MSY is then
68.3 X 10° t with a 95% credibility interval of (62.2 X
10%,77.4 X 10% t. The Bayes estimate of the needed effort
is 4.14 X 10® hook-days with a 95% credibility interval of
(3.42 X 10521 X 108) hook-days. Observe that the Bayes
estimate of MSY is moved from the unconstrained least
squares estimate towards the mean of the prior distribution.
The stronger the degree of prior belief, as reflected by a
smaller variance for the prior distribution, the greater the
shift towards the prior mean.

Empirical Bayes Estimates

Computation of empirical Bayes estimates is illustrated
with catch and effort data from 12 Dungeness crab fisheries
around British Columbia, Canada. A previous analysis of
these data has been made by Stocker and Butler (1990).
Observations are available for periods ranging from 27 to
43 yr. Following Stocker and Butler, it is logical to con-
sider surplus production models for these fisheries. Equi-
librium models should be appropriate for this species for
the following reasons: maturity is attained at age 2-3 yr
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TABLE 1. Areas inhabited by 12 stocks of Dungeness crab in British Columbia, Canada,
and estimates of the production parameters expressed on an areal basis. LS = least
squares; EB = empirical Bayes; EBH = empirical Bayes without data from Hecate Strait.

a

Area w h
Stock (km*)  Method B, B,(X107Y  (d/km?  (¢/km?)
Boundary Bay 45 LS 0.1463 0.0792 92.3 6.75
EB 0.1463 0.0794 92.1 6.74
EBH 0.1457 0.0784 92.9 6.77
Burrard Inlet 39 LS 0.0856 0.0738 58.0 2.48
EB 0.0857 0.0740 57.9 2.48
EBH 0.0861 0.0747 57.6 2.48
Chatham Sound 82 LS 0.2141 0.7665 14.0 1.49
EB 0.1692 0.2749 30.8 2.60
EBH 0.1640 0.2723 30.1 2.47
English Bay 52 LS 0.0496 —0.5160 — —
EB 0.0844 —0.2551 — —
EBH 0.0846 —0.2496 — —
Fraser River Mouth 107 LS 0.1928 0.4065 23.7 2.29
EB 0.1844 0.3590 25.7 2.27
EBH 0.1807 0.3435 26.3 2.38
Gulf Islands 62 LS 0.0512 0.0704 36.4 0.93
EB 0.0475 0.0480 49.4 1.17
EBH 0.0529 0.0717 36.9 0.98
Hecate Strait 645 LS 1.8958 0.2289 4.1 3.92
EB 1.6256 2.0132 40.4 32.8
Nanaimo 52 LS 0.0479 0.0527 45.4 1.09
EB 0.0464 0.0439 529 1.23
EBH 0.0510 0.0614 41.6 1.06
Queen Charlotte Sound 168 LS 0.0851 0.3926 10.8 0.46
EB 0.0612 0.0572 53.5 1.64
EBH 0.0647 0.0478 67.6 2.19
Sidney-Esquimalt 78 LS 0.0618 0.0829 37.3 1.15
EB 0.0609 0.0790 38.6 1.17
EBH 0.0640 0.0888 36.1 1.15
Sooke Harbour 91 LS 0.0506 0.0314 80.5 2.04
EB 0.0508 0.0319 79.6 2.02
EBH 0.0542 0.0412 65.8 1.78
Tofino 104 LS 0.1789 0.2234 40.0 3.58
EB 0.1786 0.2224 40.2 3.59
EBH 0.1750 0.2159 40.7 3.58
and males recruit to the fishery at 4—5 yr so that long lags B, — M5, By; — My, can be regarded as random variables

would not be expected in the population’s response to chang-
ing fishing effort, and the fishery is mainly seasonal so that
the population has some time between seasons to respond
to such changes.

These crab data have been chosen for the purpose of illus-
trating the application of empirical Bayes methods to estimate
the parabolic form of the Schaefer model (equation (1)).
Stocker and Butler (1990) considered several possible error
structures and selected a different form of the production
model than we used. Consequently, their estimates differ
somewhat from those obtained here. The interested reader is
referred to their paper for a careful discussion of these data.

Since the production available from a stock is determined,
in part, by the size of the stock, it is reasonable to stan-
dardize the data by expressing catches and efforts on a per
area basis. Accordingly, the catches and efforts have been
divided by the fishing area, i.e., the area occupied by, and
fished for, each stock (Table 1; T. Butler, 2630 Lynburn
Crescent, Nanaimo, BC V9S 3T6, personal communication).
This has no effect on the relative form of the fitted models but
rescales the data so that the assumption that the parameters,
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from a common distribution should be better approximated.

Scatter plots (Fig. 4) reveal much variability in the catches
for a given effort, as is typical of production data. Schaefer
models (equation (1)) fitted by ordinary least squares appear
to give reasonable fits in some cases but unreasonable fits in
others (Fig. 4; Table 1). In particular, the fitted parabola
for the English Bay data is cup- rather than dome-shaped.
This is inconsistent with the assumptions of the Schaefer
model. We have elected, however, not to reject the English
Bay data in order to see whether the empirical Bayes esti-
mate, which incorporates information from the other stocks,
will be feasible. It is noted that Hecate Strait is atypical in
that the second highest MSY per square kilometre is attained
with the smallest (standardized) effort.

With the model taken as in equation (8), empirical Bayes
estimates were obtained by following Appendix equation
(A.1) through (A.7) for all 12 stocks. The procedure con-
verged to 62 = 0.1935,

ﬁ‘,— 0.1980 —0.0025
"1-0.0025 0.000034 |
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F1G. 4. Scatter plots of catch versus fishing effort for 12 stocks of Dungeness crab from British Columbia, Canada. Also shown
are the least squares (solid line) estimates of the Schaefer production model and empirical Bayes estimates with (dotted line) and with-
out (dashed line) the data from Hecate Strait. Note that the scale for the Hecate Strait data differs from the other scales.

TaBLE 2. Range of standardized fishing efforts

(d/km?),

Stock Minimum Maximum
Boundary Bay 1.0 86.0
Burrard Inlet 0.9 58.3
Chatham Sound 0.3 15.1
English Bay 0.4 22,7
Fraser River Mouth 0.1 259
Gulf Islands <0.1 23.8
Hecate Strait <0.1 1.1
Nanaimo 0.2 26.0
Queen Charlotte Sound 0.2 9.8
Sidney-Esquimalt 0.1 37.4
Sooke Harbour 0.4 41.9
Tofino 1.6 47.6

and g’ = [0.228, 0.00252]. The estimates of the production
parameters are given in Table 1.

For some stocks the differences between the empirical
Bayes estimates and the least squares estimates are virtu-
ally imperceptible, for example, Boundary Bay, Burrard
Inlet, Sooke Harbour, and Tofino. On the other hand, there
are stocks, namely Chatham Sound, Queen Charlotte Sound,
and Hecate Strait, where the differences are substantial. The
similarity, or lack thereof, between the empirical Bayes and
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least squares estimates is related to the range of fishing
efforts (Table 2). It would appear that, for Chatham Sound
and Queen Charlotte Sound, the fishing effort employed
does not approach that corresponding to the MSY; forcing the
Schaefer model on these data leads to seemingly unrealistic
least squares estimates whereas the empirical Bayes esti-
mates are much more in accordance with what would be
expected in relation to the production of other stocks. The
standardized efforts (effort per unit area) for Hecate Strait are
so small as to contain virtually no information on the catch—
effort relationship. Accordingly, the empirical Bayes pro-
cedure takes as estimate of w a value close to the average of
the other stocks. Because the catches are relatively high for
these small efforts, the empirical Bayes estimate of A is
then, seemingly, unrealistically high.

Although moved in the right direction, the catch—effort
curve for English Bay remains cup-shaped. The cup-shaped
curve for English Bay arises from the English Bay data appear-
ing to fall into two groups. This was noticed by Stocker and
Butler (1990) who fitted separate lines to what they judged to
be separate phases of the fishery, namely (i) 1963-72 and
(ii) the remaining years 1951-62 and 1973-88.

It has been assumed that the B, — u, and 8,, — u, are
bivariate normally distributed. However, one does not need
any formal test to conclude that it is inconceivable that the
empirical Bayes estimates (Table 3) could arise from a nor-
mal distribution. Hecate Strait is clearly an outlier. This

Can. J. Fish. Aquat. Sci., Vol. 51, 1994



TABLE 3. Ranked empirical bayes estimates of regression parameters.

Stock By - Stock [(3§< 103
Nanaimo —0.182  English Bay —0.507
Gulf Islands —0.181 Sooke Harbour —0.220
Sooke Harbour —0.178 Nanaimo —-0.208
Sidney—Esquimalt —0.168 Gulf Islands —0.204
Queen Charlotte Sound —0.167 Queen Charlotte Sound —0.195
English Bay —0.144  Burrard Inlet —0.178
Burrard Inlet —0.143 Sidney-Esquimalt -0.173
Boundary Bay —0.082 Boundary Bay —0.173
Chatham Sound —0.059 Tofino —0.030
Tofino -0.050 Chatham Sound 0.023
Fraser River Mouth —0.044 Fraser River Mouth 0.107
Hecate Strait 1.397 Hecate Strait 1.760

raises the question of how much influence the Hecate Strait
data may have had on the empirical Bayes estimates of the
other stocks. Accordingly, empirical Bayes estimates have
been computed with the Hecate Strait data excluded (Table 1,
with g’ = [0.102,—0.00311]). The only notable changes in the
estimates occur with Queen Charlotte Sound, Sooke, and,
in particular, Gulf Islands and Nanaimo, with the last two
moving towards the least squares estimates; in all cases,
difference in the fits over the range of the data is virtually
imperceptible. For completeness, the estimates of B,; —
and B,; — u, are given in Table 4.

Discussion

A suite of methods for fitting surplus production models
has been presented. These methods vary in their data require-
ments and their ease of computation. The estimator based
on fixing the height (equation (4)) is a convenient tool when
stock assessment must be done quickly, such as during meet-
ings. The convenience lies in the availability of an analytic
solution and in the near linearity of the relationship between
the assumed height (or MSY) and the estimated width (or
corresponding effort). The other methods require consider-
ably more computation. The Bayes estimates are useful
when limited prior information is available to aid in parameter
estimation. However, when observations are available on
several similar stocks, empirical Bayes estimates become
attractive.

A classical alternative, used for example by Polovina (1989),
is to fit production models simultaneously to a set of stocks
under the assumption that at least one of the parameters is
common to all stocks. A special case of this is Munro’s
composite production model (Munro and Thompson 1973) in
which a single parabola is fitted to all of the data after nor-
malizing catches and efforts to a per area basis. This involves
fitting fewer parameters than the empirical Bayes approach
and may be useful when only a few years of data are avail-
able. However, it is not nearly as flexible. One drawback
with empirical Bayes estimators is that, as noted by Press
(1989), because there is no natural standard error, it is dif-
ficult to find credibility intervals or to test hypotheses.

It is well known that, when the necessary assumptions are
met, empirical Bayes estimates will be as good as, or better
than, the separate least squares estimates for each system.
Indeed, Press (1989) observed that “Often, the risk of the
empirical Bayes estimator is less than half that of the MLE
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TABLE 4. Empirical bayes estimates of regression
parameters (Hecate Strait omitted).

~ Ba — iy

Stock B, —f; (X107%
Boundary Bay 0.044 —-0.017
Burrard Inlet -0.016 —-0.020
Chatham Sound 0.062 0.177
English Bay —-0.018 —0.345
Fraser River Mouth 0.079 0.248
Gulf Islands -0.049 —0.023
Nanaimo —0.051 -0.034
Queen Charlotte Sound  —0.038 —-0.047
Sidney-Esquimalt -0.038 -0.006
Sooke Harbour —0.048 —-0.054
Tofino 0.074 0.121

[maximum likelihood estimator]”. Of course, the ordinary
least squares estimates are “best” under a simple least squares
criterion. In the surplus production example the differences
between least squares and empirical Bayes estimates occur
primarily outside the range of the data (i.e., in the region
where there is little or no direct information). The residual
sums of squares from the empirical Bayes estimates are
only marginally inflated over those from the least squares
estimates. In those cases where least squares estimates of
the height and width are poorly defined, they are made more
compatible with the estimates for the other stocks; other-
wise, they are little, if at all, changed.

The assumptions behind empirical Bayes estimation of
the stock production model that might fail are as follows:
(1) the €; may not be normally distributed, their variance
may vary from stock to stock and with effort within a stock,
and they may not be mutually independent among years
within a stock, (ii) the regression parameters may not be
independent random observations from a normal prior dis-
tribution, (iii) equilibrium production may be an asymmet-
ric function of effort rather than the parabolic function used,
(iv) production may not be at equilibrium in all years, and
(v) catchability may be changing (increasing) over time.

The crab example suggests that the results are reason-
ably robust against violation of (ii) and this assumption can
be assessed by looking at the distribution of the regression
parameter estimates. Likewise the estimates, although not
necessarily their variance, should be reasonably robust
against violations of (i). Violation of (iii) would not appear
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to be a problem if the bulk of the data fall on, and fully
cover, the ascending arm of the curve and the second-degree
equation is a reasonable approximation for that arm. The
English Bay data suggest that violation of (iv) or (v) can,
however, be a problem. Nonequilibrium models (not con-
sidered here) may be useful for situations where the effort has
changed rapidly over time. In rapidly developing fisheries,
MSY tends to be overestimated if equilibrium models are
used. If the catchability increases over time, then MSY will
also tend to be overestimated; this is difficult to handle.

Although we have chosen to illustrate Bayesian approaches
to surplus production modelling using the simple equilib-
rium Schaefer model, the modifications required to handle
other production models are in many cases minor. Consider,
for example, the nonequilibrium model described by Schnute
(1989), namely

dy . (x;

=(1—8)%xj—(1—8)izx}+@+ej
w w

Y
J
X5

where 18] < 1 and the other symbols are as defined above.
This model describes the catch in year j as a weighted mean
of the equilibrium production in year j and a residual effect
dependent on the catch in the previous year (j — 1). It is thus
a first-order autoregressive model for which Schnute (1987)
shows how to construct the likelihood.

To cast this model in a Bayesian framework, one simply
multiplies the likelihood for the data by the prior distributions
for each parameter (h, w, 8, ¢) to obtain a function which is
proportional to the joint posterior probability density func-
tion. This function is converted to a proper density func-
tion by multiplying by a suitable constant (determined by
numerical integration). The posterior density is then treated
in the same manner as above.

The methods considered in this paper can also be extended
to allow the prior distribution of the parameters to depend on
covariates. Strenio et al. (1983) described a generalization of
the procedures of Dempster et al. (1981) to allow the
expected value (u,,u,) of the production parameters to be
linear functions of covariates. Thus, for example, the pro-
duction parameters might depend on water depth, water
temperature, area encompassed by the stock, etc. It seems that
lack of data, rather than lack of suitable methodology, is
the impediment to future analysis.

Finally, it is noted that the same approach used here for
stock production models can be used for other fishery models.
In particular, the fit of individual stock—recruitment models
is generally quite poor but there may be data available for
several stocks. For example, instead of fitting a separate
Ricker model to the salmon stock in each stream, one could
use an empirical Bayes procedure to fit models to all the
stocks simultaneously.
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Appendix
Computation of the Empirical Bayes Estimates

Algebraically, the specifics for the situation represented by
equation (8) of the main text are as follows. Let equation (8)
be expressed in matrix form as

y=Xvy+e

where y is an n X 1 vector of catches (n = 2n;) obtained by
concatenating the catches from all / stocks into a single
vector and X = [B,,D,] where B, = [X[,X},...X}]', D, =
diag (X,,X,,....X,), and

. ) 7
X X
2
X2 X2
X, =
2
in; _‘xin,

Also, y" = [p',v4] where p' = [, ,], vé = [v}, v3,...,¥/] and
vi=1[B,; — p,,Ezi — W,]. Note that y" isa 1 X 2(I + 1)
row vector. Finally € is the n X 1 vector of normally dis-
tributed residuals assumed to be independent with mean
zero and variance o. In addition, we define the 21 X 2/
block diagonal matrix V as diag (%,3%,...,.X).

To begin the EM algorithm, we need initial guesses for
V (or, equivalently, %) and o which we denote by V© (or
3@y and o%?, respectively (superscripts in parentheses indi-
cate the number of iterations performed).

The sufficient statistics for o> and V are €'e and vﬁvé,
respectively (Dempster et al. 1981). In the E (expectation)
step the expected values of these statistics are computed as
follows. Let

o o

k)-1
021><2 v®

The regression coefficients are then estimated as
_ ’ [(Z0RY) - ’
(A yO=[p® v§ ) =pO X'y

and the estimate of the variance—covariance matrix of the
estimated regression coefficients, V., is given by

®  c®
o | Ve Cos | wpwn
(A3) V! A BT
CM,B VB

where V and V; denote the variance matrices of p and vy,
respectively, and C,, ; denotes the covariance matrix between
p and vg.

Conditional on these estimates of iy and V., the expected
values of the sufficient statistics for o and V are

(A4) S,.=E(e'ely,V® g2®)
=y'y-2y'Xy® +y®' X'Xy® +1r (X'XVY)

= ! ®) w20 = y® @’ *)
(A.S) SV E(VBVB|y,V , O )_VB vB +VB .

This completes the E step.
For the M (maximization) step, we comgute the maxi-
mum likelihood estimates of ¢* and V. For o? this is simply

(A.6) g2*th=§ ,/n.

The estimator for X (and hence V) can be obtained from
S,. Specifically

I
(k+1) _ k) *) k)
(A.T) P4 _Z(V72i+p.2i+q+‘y2i+p‘y2i+q)/1
i=1

for p,q = 1,2. Here, V‘.:‘z)iﬂ,'2i+q is the 2i + p,2i + q ele-
ment of the matrix V_ in the kth iteration.

Given ¢®**" and Z¥+Y for k = 0, one can compute (A.1)
through (A.7) and then use the results to obtain values gXk+h
and &+ for k = 1, recompute (A.1) through (A.7), etc.,

. “pa . .
until adequate convergence is achieved.





