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Abstract.--The EM (expectation-maximization) algorithm was used to develop a general pro- 
cedure for finding maximum likelihood estimates of population proportions when some obser- 
vations cannot be assigned unambiguously to a population category. The method can be used to 
estimate the age composition of fish from length frequencies, to adjust biased estimates of age 
composition (e.g., scale ages that tend to be too low), and to correct biased estimates of unit stock 
composition. To implement the method, two samples are obtained. In the first sample, the items 
are cross-classified by their actual identity and by a second (possibly error-prone) surrogate clas- 
sifying variable. In the second sample, the items are classified by only the surrogate variable. The 
information in the two samples is then used to estimate the population proportions in the second 
sample. 

A variety of seemingly unrelated problems in 
fisheries science can be shown to be special cases 
of a general problem involving partially classified 
contingency tables. Consequently, these problems 
can be solved by a single, simple statistical meth- 
od. Our work in this area was motivated by three 
important tasks in fishery science which serve to 
illustrate the generality of the basic problem. 

The first task involves correcting error-prone 
estimates of stock composition. Suppose some 
classification rule is developed for identifying fish 
and the rule then is applied to known samples 
(e.g., fish collected from their spawning grounds). 
The resulting information can be used to estimate 
(mis)classification rates which, in turn, can be used 
to correct the results of a survey in which the clas- 
sification rule is applied to animals of unknown 
identity. 

The second task involves aging a sample of fish 
in order to cross-classify the animals by age and 
length. The resulting classification rates can be used 
to estimate the age composition of any population 
from its length-frequency distribution (provided 
that growth rates and gear selectivities do not vary 
among samples). 

The third task is to correct the results of a growth 
study in which the age of animals is determined 
by an error-prone technique. For example, count- 
ing annuli on fish scales tends to underestimate 
the age of old animals. If some animals are aged 

by both the scale method and a more reliable 
method (such as otolith rings), then the estimate 
of age composition obtained from scale readings 
can be adjusted to the more reliable categoriza- 
hon. 

A structure shared by these problems is that two 
samples are obtained. In the first sample, all items 
are completely cross-classified by two classifying 
variables. We will call the first (row) variable the 
accurate classifier and the second (column) vari- 
able the error-prone or, more generally, the sur- 
rogate classifier. In the second sample, the items 
are classified by only the error-prone classifier. If 
there are I accurate categories and J error-prone 
categories, the data can then be represented as a 
partially classified I x J x 2 contingency table 
(Figure 1). 

In this paper, we describe the structure of the 
basic problem as a particular log-linear model as- 
sociated with the partially classified contingency 
table. We then develop a procedure to find max- 
imum likelihood estimates for the proportions in 
the unobserved accurate categories in the second 
sample by use of the EM (expectation-maximi- 
zation) algorithm (Dempster et al. 1977). The pro- 
cedure is illustrated and compared to existing 
methods in the literature described by Pella and 
Robertson (1978), Clark (1981), Bartoo and Par- 
ker (1983), and Cook (1983). 

A fundamental distinction between our meth- 
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k--1 

observed table complete table 
F•GURœ 1.--Representation of observed data as a partially classified I x J x 2 contingency table (left), and 

appearance of the contingency table if the data were completely classified (right). Sample number is denoted by k. 

od and previous methods is that we utilize in- 
formation in the second, incompletely classified, 
sample to help estimate classification rates. Others 
have assumed that these rates are perfectly known 
from the first sample. Of course, this ignores sam- 
pling errors in the first sample, which may be sub- 
stantial if the sample sizes are not large. Our meth- 
od allows one to examine the assumption of 
identical classification rates in the first and second 

sample. We emphasize that our method does not 
require the same accurate or surrogate population 
distributions in the populations from which the 
first and second samples were drawn. 

Structure of the Problem 

Throughout this section and the next, we will 
use as an example the estimation of an age-fre- 
quency vector (the "accurate" classification) from 
a length-frequency vector (the "surrogate" clas- 
sification). Suppose an animal can fall into one of 

I age categories, indexed by h and one of J length 
categories, indexed by j. Two samples are taken. 
In the first sample (k = 1), all animals are cross- 
classified by age and length. In the second sample 
(k = 2), only the lengths are observed (Figure 1, 
left). 

The same estimation procedure may be used for 
a variety of sampling designs. The second sample 
may result from multinomial sampling, where the 
total sample size was fixed before sampling, or 
from Poisson sampling, where the total was a ran- 
dom variable. The first sample may result from 
product-multinomial, multinomial, or Poisson 
sampling. Withproduct-multinomial sampling, the 
age marginal totals are preset. This type of sam- 
pling is generally not of interest for the length-to- 
age conversion problem described here. However, 
it may be desirable for the other examples dis- 
cussed later to ensure adequate sampling of all 
categories. 
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We will assume that the probability that an an- 
imal of age i falls in length category j remains 
constant from sample to sample. That is, 

P(J I i)t`=• = P(j I i)k=2; (1) 

P(Jl i)t`• is read as the "probability of length j 
given age i in sample 1 ." These probabilities are 
known as the classification rates. We will not as- 

sume that the two samples come from populations 
with the same age composition. As will be seen 
later, this distinguishes our approach from the 
classic age-length key, for which it is assumed that 
the distribution of age about length remains con- 
stant from sample to sample (Kimura 1977; West- 
rheim and Ricker 1978). 

Let ait` be the probability that an animal from 
sample k is in age class i. The probability that an 
animal in sample k is cross-classified as i, j, de- 
noted by P(i, j I k), is given by 

P(i, Jl k) = P(JI i)ait`. (2) 

This structure can be seen to correspond to the 
hierarchical log-linear model (Fienberg 1980) giv- 
en by 

log(cell count) = •t + Ai + Lj + St, 
+ (A.L)o + (A.S)ik; 

•t is the grand mean, A, L, and $ are main effects 
for age, length, and sample, respectively, and an 
asterisk indicates an interaction between two fac- 

tors. Each term in the log-linear model is subject 
to the usual constraint that it must sum to zero 

over any subscript (Fienberg 1970, 1980). 

Maximum Likelihood Estimation 

Maximum likelihood estimation consists of 

forming the likelihood function which describes 
the likelihood of obtaining the observed results in 
terms of the unknown parameters. The maximum 
likelihood (ML) estimates are those values of the 
parameters which maximize the likelihood of ob- 
taining the observed data, i.e., which maximize 
the likelihood function. 

The EM algorithm of Dempster et al. (1977) is 
a convenient procedure for obtaining maximum 
likelihood estimates for incomplete (e.g., grouped, 
censored, or truncated) data. Instead of writing a 
complicated likelihood function for the incom- 
plete dam, one works with the (generally) simpler 
likelihood function for the complete dam. The 
procedure consists of first guessing at the expected 
values of the missing dam, next computing the 
maximum likelihood (ML) estimates based on the 
now complete dam (maximization or M step), and 

then using the ML estimates to revise the esti- 
mates of the missing data (expectation or E step). 
The procedure is iterated by alternating E and M 
steps until convergence is achieved. The EM al- 
gorithm was applied to partially classified contin- 
gency tables by Chen et al. (1984) and Espeland 
and Odoroff (1985). However, they assumed that 
the "accurate" population composition does not 
vary among samples. Chen and Fienberg (1976) 
developed a general theory for model building with 
partially classified categorical dam but did not ex- 
plicitly deal with the particular type of problem 
and the applications considered here. 

For the length-to-age conversion problem, the 
EM algorithm proceeds as if both samples had 
been completely classified (Figure 1, right). Let nij• 
be the number of individuals in sample k classified 
as i, j. Of course, the %2 dam are not actually ob- 
served. Initially, any values can be assigned to the 
n•j 2 cells as long as the sums over i are equal to 
the observed length frequency in the second sam- 
ple, n+j 2 (the + sign in the subscript denotes sum- 
mation over the variable i; e.g., n+j 2 = • no2 ). The 
kernel of the log-likelihood for the now complete 
data is (see Appendix A) 

I J 

L = • • {%fiog[P(jli)aill 

+ %21og[P(jl i)ai2]} 
i J 

= • • (nijl + no2)logP(j [ 0 

q- • l'li+210gai2. (3) 

The maximum likelihood estimates from the 

above likelihood function are (Fienberg 1970) 

/•(Jli) = (rlij• q- rltj2)/(rli+l q- r/t+2); (4a) 
di• = ni+l/n++•; (4b) 
t•i2 : Fl,+ 2/l'l + + 2. (4C) 

Under this model, estimated expected cell counts 
are 

rho-• = P(jli)ait`n+ +t` = P(ili)ni+t`. (5) 
Finding the rh,j• values is the final step of the M 
step. 

For the E step, updated values of the cells in the 
second sample are found by 

l'•ij2 = •ij21'l + j2/ • +j2o (6) 
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This is simply a rescaling of the fitted values 
(equation 5) so that the sums over i agree with the 
observed length marginals in the second sample 
(see Espeland and Odoroff 1985). 

The M and E steps are repeated in sequence 
until adequate convergence is achieved. Conver- 
gence can be examined by noting successive 
changes (or percent changes) in the log-likelihood 
function or the parameter estimates. 

The above procedure can be simplified some- 
what by the following considerations. 

(1) Estimates of ail do not change from cycle 
to cycle and thus do not affect the maximization 
of the kernel of the log-likelihood. Hence, the atl 
values do not need to be computed and can be left 
out of the log-likelihood function. 

(2) A computationally more convenient form 
of equation (6) is 

i 

ni•2 = P(j] i)ni+2n+•.2/• [/•(Jl i)ni+2]. 
(7) 

This eliminates the need to compute rh•k values. 
When some cell counts are zero, problems may 

be encountered in evaluating the log-likelihood 
function and also in estimating the variance-co- 
variance matrix (see below). In this case, we rec- 
ommend adding a small number (e.g., 10 -4) to all 
counts. 

A flow chart for the entire procedure is pre- 
sented in Figure 2. Note that a superscript nota- 
tion has been added to denote quantifies which 
are continually updated. Variance-covariance es- 
timation based on the method of Louis (1982) is 
described in Appendix B. 

Example 

Suppose a sample of fish is aged, giving rise to 
the following tablel: 

Length category 

Age 1 2 3 4 5 6 
1 50 30 20 0 0 0 

2 0 50 30 20 0 0 

3 0 0 50 30 20 0 

4 0 0 0 50 30 20 

A second sample of fish is obtained, with the 
same sampling gear, from an area where fish are 

known to grow at the same rate as the fish in the 
first sample. Thus, the principal assumption, em- 
bodied in equation (1), is met. The second sample 
has the following length frequency for categories 
1-6: 

length frequency = [60 40 0 0 40 60]. 

The first step is to guess at the values of the age- 
length classification matrix for the second sample, 
n,•2. A convenient way to do this is to apportion 
the lengths to age-classes in the same proportions 
as in the first sample, i.e., 

1•0. 2 • ]•+j2nijl/n+jl, 

provided all of the n+i• values are nonzero. 
The next step is to compute the ML estimates 

of P(jli) and ai2. Given the ML estimates, it is 
possible to update the estimates of nij2 with equa- 
tion (7). Given the updated values of n/j2, one can 
recompute the ML estimates, then recompute the 
values of nij2, etc. until convergence is adequate. 

With this procedure, the ML estimates of the 
age composition in the second sample were found 
after about 30 iterations to be 2 

age composition = [100 0 0 100]. 

Model Evaluation 

The main assumption of our procedure is de- 
scribed by equation (1); the misclassification rates 
are the same for samples 1 and 2. This can be 
tested with either a likelihood ratio or Pearson 

chi-square goodness-of-fit test with J -- I degrees 
of freedom. However, our experience suggests that 
these tests generally would not be very powerful. 
We found it more instructive to construct stan- 

dardized residuals, computed as 

ri• = (11ijl -- l/•ijl)/• ø 
For example, a large positive residual would sug- 
gest that, on the basis of the second sample, fewer 
items would be expected in the œ j cell of the first 
sample. Numerous residuals with large absolute 
values, or a systematic pattern in the residuals, 
would cast doubt on the assumption in equation 
(1). 

i These data were provided by W. Clark (Washington 
State Department of Fisheries, Seattle, personal com- 
munication) to enable users to test and examine the per- 
formance of his restricted least-squares computer pro- 
gram for estimating age composition from length data. 

2 In this case, the procedure converges to a boundary 
solution, i.e., some of the estimated age proportions ai2 
are zero. Haberman (1974) pointed out that, in this case, 
unique maximum likelihood estimates do not exist. This 
is largely of theoretical interest rather than of practical 
concern. 
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II. 

III. 

IV. 

Guess at initial values for second sample cells, e.g. 

hi j2 (0) = n+j 2 nijl/n+jl 
s=0 

M Step 

(a) P(jli) (s+l) = (nij 1 + nij2 (s)) / (hi+ 1 + hi+2 (s)) 
(b) ai2 (s+l) = hi+2 (s) / n++ 2 
E Step 

(s+l) _ 
nij 2 - 

P(jli)(s+l)ni+2(S)n+j 2 
E [P(jli) (s+l) hi+2 (s)] 
i 

Compute the kernel of the log-likelihood, L, for 
nonzero estimates of P(j]i) and ai2 

L = Z Z (nij 1 + nij2(s+l) )log P (jli) (s+l) + I; ni+2 (s+l) 
i j i 

V. Evaluation step 

let s=s+l 
(a) If first cycle, then set L' = L, and to to II. 
(b) else if ]L' - Ll< tolerance, then stop. 
(c) else, set L' = L, and go to II. 

log ai2 (s+l) 

FIGURE 2.--The EM algorithm. Superscripts denote the cycle in which an iterated quantity is defined. 

Discussion 

The method of maximum likelihood estimation 

has desirable asymptotic properties when certain 
very general regularity conditions can be met (Bury 
1975), as is the case for the problems considered 
here when the parameters are all positive. These 
asymptotic properties include minimum variance, 
unbiasedhess, and normality. Several alternative 
approaches to the correction-conversion problem 
have been described in the fisheries literature. 

These approaches are reviewed below. 

Age-Length Key Problem 

Traditionally, age composition has been esti- 
mated from length-frequency data by use of the 
age-length key method developed by Fridriksson 
(1934). The basic idea is to stratify a large sample 
by length and to determine the age composition 
in a random subsample from each interval. The 
age-length data from the subsamples make up the 
key; the key is equivalent to what we call the first 
sample. The total number of animals at any given 

age i is taken to be the sum, over all L length 
intervals, of the number of animals in the interval 
(N•) times the estimated proportion (from the key) 
that are age i (p,), or 

L 

When the assumptions of this method can be met, 
the classic key should be preferable to our more 
general model because fewer parameters need to 
be estimated. Further statistical development of 
this approach is presented in Tennenbein (1970, 
1971). 

Kimura (1977) and Westrheim and Ricker 
(1978) recognized the serious limitation that a 
classic age-length key can only be applied validly 
to samples from a population with the same age 
composition and growth rates as the one from 
which the key was derived, and only if the gear 
selectivity for the samples is the same. Clark (1981) 
and Bartoo and Parker (1983) made an important 
advance in technique by showing that it is possible 
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to avoid the assumption of constant age compo- 
sition from sample to sample. Instead of working 
with the distribution of age about length, which 
depends on the age composition, they used the 
distribution of length about age, which is inde- 
pendent of the age composition. We call this kind 
of approach an inverse age-length key. They for- 
mulated the problem in matrix algebra as a linear 
model given by 

L = PA; 

L and A are the length- and age-frequency vectors 
and P is a matrix of transition probabilities in 

which the elements p• represent the proportion of 
animals of age i which fall into length classj. Bar- 
too and Parker (1983) solved this system of equa- 
tions by ordinary least squares. Clark (1981) 
pointed out that the ordinary least-squares solu- 
tion can give infeasible estimates (i.e., negative 
proportions) and proposed a restricted least- 
squares approach in which each proportion is re- 
stricted to non-negative values. No method of es- 
timating variances and covariances was provided 
in either paper. Both approaches assume that the 
P matrix is known exactly and that the only vail- 
ability (random error) occurs in the length-fre- 
quency vector from the second sample. In prac- 
tice, the length-frequency vector is usually based 
on a large sample and is thus known quite pre- 
cisely. In contrast, the P matrix is usually based 
on a small number of age determinations, because 
age determinations are tedious to perform, and is 
thus subject to uncertainty. A basic assumption of 
the least-squares approaches is, therefore, called 
into question. 

A consequence of the least-squares approach to 
the problem formulation is that the estimates do 
not depend on the relative sizes of the two sam- 
ples. Since the classification matrix (based on 
sample 1) is assumed to be known perfectly, 
changes in the relative sizes of the two samples 
do not lead to a different weighting scheme for the 
information in the two samples. 

The maximum likelihood approach, in con- 
trast, allows for uncertainty in all of the data, the 
degree of uncertainty depending upon the sample 
sizes. This model is thus more realistic than the 

least-squares models. When the model fits the data 
exactly, the least-squares approaches give maxi- 
mum likelihood estimates. That is, the least- 
squares estimates are maximum likelihood if it is 
possible to satisfy simultaneously the conditions 
that: 

(1) the fitted values for the second half of the 

table (k = 2) are all non-negative and add up to 
the observed surrogate variable totals; and 

(2) the fitted error rates in the second half of 
the table, i.e., fitted P(Jl i)tc=2 = n(/2/n•+2, are each 
equal to the corresponding observed error rates in 
the first half of the table (=not/ni+t). 

In other cases, the two approaches can give sig- 
nificantly different results. For example, the re- 
stricted least-squares estimates for the age-distri- 
bution example above are 

[123.6 0 0 76.4], 

whereas the maximum likelihood estimates are 

[100.0 0 0 100.0]. 

The restricted least-squares estimates appear un- 
reasonable since there are 100 small fish and 100 

large fish, and the classification matrix indicates 
that no large fish are age 1, yet the predicted age 
composition implies that some large fish are, in- 
deed, age 1. 

As this paper was being submitted for publi- 
cation, we received a manuscript (Kimura and 
Chikuni, 1987) which describes another approach 
to applying the EM algorithm to the age-length 
key problem. Kimura and Chikuni obtained max- 
imum likelihood estimates for a different model 

in which it is assumed that there are no sampling 
errors in the first sample. If the size of the first 
sample is large, the two methods will give similar 
results. 

Correcting Estimates of Stock Composition 

Pella and Robertson (1978) developed a pro- 
cedure for correcting biased estimates of stock 
composition which generalizes the results of sev- 
eral earlier studies in the literature. Suppose an 
error-prone classification rule is developed and 
applied to fish of known identity. This gives rise 
to a matrix of classification rates, P, whose ele- 
ments p• estimate the probability that an animal 
from stock i is classified as stock j. If the error- 
prone rule is applied to a sample of fish whose 
identifies are unknown, it follows deterministi- 
cally that the observed, error-prone stock com- 
position vector, E, is related to the actual stock 
composition, A, by the matrix equation 

E = PA. 

Consequently, the actual stock composition vec- 
tor can be estimated as 

.& • P-•E. 
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FIGURœ 3.--Typical relationship between scale age and 
actual age for a long-lived fish species. In region "a," 
there is a close correspondence between actual and es- 
timated ages; in region "b," there is a systematic un- 
derestimate of age by the scale method which can be 
accounted for with a bias correction procedure; in region 
"c," the relationship between scale age and actual age is 
so tenuous that the bias correction procedure will be 
ineffectual. 

Variance-covariance estimation was accom- 

plished by the delta method. The same matrix 
inversion procedure was used by Greenland and 
Kleinbaum (1983) to correct for misclassification 
errors in diagnostic test results obtained in epi- 
demiological surveys. 

Cook (1983) pointed out that the P-inverse 
method of Pella and Robertson sometimes pro- 
duces infeasible (negative) estimates. Cook sug- 
gested for this case, with little statistical justifi- 
cation, that one should take as the estimate the 
feasible solution which is the shortest Euclidean 

distance from the P-inverse solution. 

The EM algorithm described in our paper can 
be used to obtain maximum likelihood estimates 

of the actual stock composition. The only alter- 
ations required are to replace the words "length" 
with "error-prone" and "age" with "actual" in the 
above descriptions. If product multinomial sam- 
pling is used for the first sample, the actual mar- 
ginals rather than the error-prone marginals must 
be fixed. 

It can be shown (Hoenig and Heisey 1986) that 
whenever the P-inverse method gives feasible es- 
timates, those estimates are maximum likelihood. 

When the P-inverse method gives infeasible re- 
sults, Cook's (1983) method does not, in general, 
return maximum likelihood estimates except for 
the case where the population consists of just two 
stocks. 

The choice of method can be significant. For 
example, if the classification data matrix is as fol- 
lows: 

Classified 

Actual A B C 

A 10 20 0 

B 0 10 20 

C 10 20 30 

and the error-prone estimates from a survey are 

E r = [30 20 10], 

then the three methods produce the following ad- 
justed estimates: 

Method Stock A Stock B Stock C 

P-inverse 0 - 120.0 180.0 
Cook 0 0 60.0 
Maximum 

likelihood 41.5 0 18.5 

Adjusting Error-Prone Estimates of 
Age Composition 

It often happens that an investigator is faced 
with a choice of methods for aging animals. For 
example, fish scales can be obtained easily without 
killing the fish and are relatively easy to process. 
Otoliths and other internal calcified structures can 

only be obtained at the expense of killing the fish, 
and generally require more effort to process. How- 
ever, internal structures generally provide more 
reliable estimates of age, particularly for older 
(larger) animals (e.g., Casselman 1983; Barnes and 
Power 1984; O'Gorman et al. 1987). 

The same procedure described above for cor- 
recting biased estimates of stock composition can 
be used for the biased age problem. In the first 
sample, animals are classified to age by both the 
(more) reliable method (otoliths) and the error- 
prone method (scales). In the second sample, only 
the error-prone method is used. It should be not- 
ed, however, that this procedure is not a cure-all 
and will not provide reliable estimates for the old- 
est age classes of long-lived species. This is be- 
cause, above a certain age, the error-prone method 
may break down to the point that very little in- 
formation is provided about actual age. For ex- 
ample, it is apparent in Figure 3 that animals clas- 
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sifted as being age 15 by the scale method may be 
anywhere from 12 to 30 years old. The same is 
largely true of animals classified as age 20 by the 
scale method. Thus, there is little information with 
which to distinguish the true ages of these animals 
on the basis of their apparent (scale) age. This will 
be reflected in the portion of the covariance ma- 
trix referring to the age composition of the oldest 
age groups. The correction method will, therefore, 
be useful only over a portion of the age range and 
can serve only to extend the usefulness of the scale- 
aging method. It will not obviate the need to use 
otoliths for the oldest animals in a long-lived stock. 

Other Applications 

The procedure presented here should be useful 
for a wide variety of applications. Survey response 
errors can be estimated by follow-up studies or 
other forms of independent corroboration and then 
used to correct survey results. For example, deer 
harvest registration in Minnesota was monitored 
by having biologists make spot checks at registra- 
tion stations. A systematic bias in reporting was 
detected and accounted for by the correction pro- 
cedure described here (Hoenig and colleagues, 
personal observations). Similarly, misclassifica- 
tion errors in disease surveys can be accounted for 
if one knows the error properties of the diagnostic 
test used (e.g., Greenland and Kleinbaum 1983). 
In population genetics studies, genotypic frequen- 
cies can be estimated from phenotypic frequencies 
if an appropriate conversion procedure can be 
developed. The estimation of unit stock compo- 
sition is an example. If some animals are cross- 
classified by results of electrophoretic examina- 
tion (i.e., by genotypic traits) and morphometric- 
meristic analysis (i.e., based on phenotypic and 
genotypic traits), then population composition can 
be estimated from a survey of the phenotypic traits 
(see also Haberman 1974). Finally, a variety of 
error-prone techniques is available for classifying 
animals to sex, species, age, and maturity (Hoenig 
and Heisey 1984). Estimates of proportions de- 
rived by these methods can be adjusted with the 
procedure in this paper. 
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Appendix A: Derivation of the Likelihood Equation (3) 

For each sample, the probability that an animal lies in cell i, j is given (from 
equation 2) as 

P(i, J l k) = P(Jl i)ait,. 

Thus, the joint likelihood for observing n• animals in cell i, j of the first sample 
(i = 1 ..... I; j = 1 ..... J) when the sample size is fixed at N• is 

1 J 

N•! II II [P(Jl 
i=• 

for multinomial sampling. Analogous results hold for the second sample, with 
aa, no2, and N2 replacing ai•, n0•, and N•, respectively. 

Since the first and second samples are drawn independently, the joint likelihood 
is equal to the product of the likelihoods for each sample. Thus, 

1 J 2 

A = N,!N2! II II II [P(Jl i)a•]nøk/n•k !. 
i=1 j=l k=l 

Taking logarithms gives 
1 J 

log A = constant term + • • {no.•log[P(jl i)ai•] + no21og[P(jl i)aa]}, 
i=1 j=l 

for which the constant term is 

log N•!N2! nok! . 
j=l k=l 

Dropping the constant term because it does not affect the maximization yields 
the kernel of the log-likelihood L given by equation (3). 
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Appendix B: Calculation of the Estimated Variance•ovariance Matrix 

The computational procedure described hcrc is based on the method of Louis 
(1982), which allows one to estimate the covariancc matrix from the "complete" 
data likelihood function. The interested reader is referred also to Dinsc (1982). 

The likelihood function for the "complete" data was derived in Appendix A 
under the assumption of product multinomial sampling. The kernel of the log- 
likelihood can bc written (from equation 3) as 

I J I J 

L = • • nollOg[P(jlO ] 3- • • no•log a• 
i=1 j=l i=1 j=l 

I J I J 

+ • • no21og[P(J[ i)l 3- • • no21og a•2. 
i=l j=l i•l j•l 

We note that the above parameters are subject to certain constraints: 
• P(jli) = 1; • alx • 1; Z ai2 • 1. 

That is, the sum of probabilities over the appropriate subscript must equal unity. 
Thus, we can write 

P(Jli) = 1 - • P(jli); a,l = 1 - • all; a,2 = 1 - • ai2. 
j•l i=l i•l 

We need only consider I - 1 of the a,l parameters, I - 1 of the ai2 parameters, 
and I(J - 1) of the P(j I i) parameters. 

Define S to be a vector of parameters of length 

(I- 1) q- (I- 1) q- I(J- 1)=I(Jq- 1)- 2, 

with the parameters ordered as 

S r = [all, a21, ..., a,-l,l, P011), P(211) .... , P(J - 11/), al2, a22 ..... al-l,2]. 

Then define the gradient vector of partial derivatives G with elements 

g• = 0 log L/OS• 

for ! = 1 ..... I(J+ 1) - 2. This is accomplished as follows. 

(I) If l-< I- 1, 

g• = (n•+l/a•l) - (n•+l/an). 

(II) If/- 1 < l_<(I- 1) + I(J- 1),let 

i = 1 + trunc{[l -(I - 1) - 1]/(J- 1)}; 

trunc means truncate to an integer; 

j* = [1 - (I - 1)] modulo (J - 1); 

j* ifJ • • 0 
J = [J- 1 otherwise ; 

then 

g• = [n•j+/P(jl i)1 - [nis+/P(JI i)1. 

(III) If(/- 1) + I(J - 1) < 1, let 

i=l- [(I- 1) + I(J- 1)]; 

then 
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g! = (rti+ 2/ai2) -- (rt•+ 2/ai2). 

Now, for each of the n+++ fish, construct an I x J x 2 indicator matrix X. If 
the fish was in the i, j cell of sample k = 1, let xo• = 1, and set all other cells in 
X equal to 0. If the fish was in sample k = 2 and belonged to surrogate category 
j, then let 

I 

xij2 = P(JI i)aa/ •3 P(JI l)at2 
/=1 

for all i, and set all other cells in X equal to 0. 
The next step is to evaluate the G vector for each fishf resulting in n+ + + vectors 

•f. The •f vectors are constructed from the X matrices and the final parameter 
estimates from the EM algorithm as follows. 

(1) Everywhere the letter "n" appears in a formula for gt, replace it with the 
letter "x." 

(2) Everywhere a parameter appears, replace it with the estimate of the param- 
eter. 

Thus, the formula for the first element of G, 

g• = (ni+•/aa) - (n•+•/an), 

would become 

oa• = (x•+•/diO - (xi+•/diO; 

and would be evaluated for the fih fish by substituting in the appropriate values 
obtained from the X matrix for fishf. 

For each fish f, compute the information matrix If by 

The Fisher information matrix for the entire data set is the sum of the Izmatrices. 
Thus, 

I= 23 Is. 

Of course, it is computationally more efficient to calculate I s only once for each 
observed cell and then calculate I as the sum of the If matrices weighted by the 
observed cell counts. 

Finally, the estimated variance-covariance matrix (½q) of the parameter esti- 
mates is the inverse of the information matrix, • = 

Example 

Suppose the following set of age-length data is to be used as the basis for an 
inverse key: 

Length c•ss 

Age 1 2 3 4 5 6 7 8 9 10 
1 42 12 8 2 0 0 0 0 0 0 
2 1 13 20 56 24 12 2 0 0 0 
3 0 0 8 16 29 38 27 15 7 3 
4 0 0 0 0 2 5 11 27 13 4 

and suppose the following length-frequency distribution is obtained in the second 
sample: 

[143 71 122 214 161 172 118 133 59 21]. 
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Then the estimated age composition is as follows: 

age 1 2 3 4 

number 213 368 444 188 

proportion 0.18 0.30 0.37 0.15 

There are 42 separate parameters estimated for this model. Rather than present 
the full 42 x 42 covariance matrix, we focus attention on the estimated age com- 
position for the second sample. The estimated covariance matrix for the propor- 
tion at ages 1, 2, and 3 in the second sample is given below (E denotes scientific 
notation). 

Age 

Age 1 2 3 
1 3.57E-4 -4.5 E-4 1.94E-4 
2 -4.5 E-4 2.29E-3 -2.7 E-3 
3 1.94E-4 -2.7 E-3 4.51E-3 

To find the estimated variance of the proportion at age 4, •(d42), we note that 
3 

d42 = 1 - • di2. 
i=1 

Hence, 

3 

: • f'(&2) + 2 • • C•v(g,2, 42) 
i=l •<j<4 

= 1.2 E-3. 

By similar reasoning, the estimated covafiance between g42 and the other estimated 
proportions is 

3 

Co•(a42, ai2): --• •v(ai2, ad2) 
j=l 

(Co•[da, d,2] is, by definition, P[da]). Thus, Co•(d42 , all2 ) = -9.4 E-5, C0•(d42 , 
•22): 8.6 E-4, and •v(•42 , •32) = -2.0 E-3. 


