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Abstract.—Survival rates can be estimated from annual surveys by tracking the abundance of one or more

cohorts, as measured by catch per unit of sampling effort, from one year to the next. However, it can be

difficult to attain reasonable precision unless sampling effort is extensive. Indeed, estimates of survival

exceeding 100% are not infrequently obtained. We show that data from several years can be analyzed

simultaneously to obtain a single estimate of survival under the assumption that survival is constant over the

period analyzed. The method requires that only a single cohort be identified and separated from the other age-

groups. Thus there are minimal data requirements. Estimates of the survival of goosefish Lophius americanus

obtained by this method compare favorably with estimates obtained by analyzing changes in mean length over

time.

Annual survival rate, S, can be estimated from

annual surveys in various ways. Most methods are

based on the relationships

Naþ1; tþ1 ¼ SNa;t

and

Ia;t ¼ qNa;t;

where N
a,t

is the number of animals of age a alive at the

time of the survey in year t, I
a,t

is the expected value of

an index of abundance of the animals of age a in year t,
and q is the catchability coefficient. The survival rate

for age a in year t can thus be estimated as

Ŝt ¼
N̂aþ1; tþ1

N̂a;t

¼ Îaþ1; tþ1

Îa;t

;

where the ‘‘hat’’ symbol denotes an estimate. This

method was used as far back as 1934 (Graham 1934,

1938). When several years of data are available, an

index of abundance can be regressed on the previous

year’s value for the same cohort. The assumptions are

that survival and catchability (more properly, avail-

ability to the survey gear) are constant over time and

age and that the ages of the animals observed in the

survey can be determined.

Sometimes it is difficult to determine ages for older

animals. However, it may be possible to identify one

age-group, say age 3, and divide the survey catch into

animals of that age and animals above that age. If one

age-group can be identified and separated from the

others and two years of data are considered, then the

survival rate can be estimated by

Ŝt ¼
N̂�aþ1; tþ1

N̂�a;t

¼ Î�aþ1; tþ1

Î�a;t

; ð1Þ

where the notation �a means all ages greater than or

equal to a. That is, age-groups are pooled and the

abundance of a group of cohorts is followed from one

year (when they are age a and above) to the next (when

they are age aþ 1 and above). Heincke (1913, cited in

Ricker 1975) was apparently the first to suggest

pooling data over ages, although he formulated the

estimation procedure in terms of a cross-sectional catch

curve (age composition observed in one year) rather

than as a longitudinal catch curve (changes in

abundance of specified cohorts monitored over time).

Gulland (1955) pooled ages and computed survival

from the change in abundance of a group of cohorts

from one year to the next. A generalization of this to

include more than two years of data has not been given

previously and is developed below.

Development of Multiyear Estimators

We consider just two age-groups in the population:

recruits and previously recruited animals. Recruits are

defined to be those animals that will join the previously

recruited animals the next year (if they survive the

year). The relationship between the number of

previously recruited animals in year t þ 1 (N
tþ1

) and

the number of recruits (R
t
) and previously recruited

animals (N
t
) in year t is

Ntþ1 ¼ SNt þ /�Rt; t ¼ 1; . . . ; T � 1;
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where /* and S are the survival rates of the recruits and

previously recruited animals, respectively, and T is the

number of years of survey data. In terms of the

expected values of indices of abundance, we have

Itþ1 ¼ SIt þ /rt; t ¼ 1; . . . ; T � 1; ð2Þ

where r
t

is the expected index of recruits in year t and

/ subsumes the survival of recruits and the selectivity

of the survey gear for recruits. If the indices I
t

are

independent, then equation (2) is in the form of a

multiple linear regression with no intercept. Parameter

estimates can be found easily by minimizing the sum of

squared deviations between observed indices, Î
tþ1

, and

the predictions obtained from the previous year’s

indices, Î
t

and r̂
t
, that is by minimizing

XT�1

t¼1

ð̂Itþ1 � ŜÎt � /̂r̂tÞ2: ð3Þ

The model in equation (2) is quite general because it

allows recruits to have a different catchability or

survival rate (or both) than the previously recruited

animals. However, the estimates of S and / may be

highly negatively correlated and unstable unless

appreciable contrast is observed in the recruitment

over time. Therefore, it will often be necessary to adopt

additional assumptions.

An alternative is based on the idea that the parameter

/ is likely to be close to the value of S. Recruits may

have a higher natural mortality than previously

recruited animals but probably have a lower fishing

mortality and a lower catchability so that, on balance, it

may be reasonable to set / equal to S to obtain an

estimate of survival. Thus, equation (2) would be

replaced by

Itþ1 ¼ SðIt þ rtÞ; t ¼ 1; . . . ; T � 1: ð4Þ

Example: Goosefish

Goosefish Lophius americanus are captured in the

annual groundfish trawl survey conducted by the

National Marine Fisheries Service’s Woods Hole

Laboratory in the fall of each year. However, the

survey was not designed to sample this species and the

catches are always low, ranging from 14 to 196 animals

per survey. Despite this, the mean length data from the

survey have proved useful for estimating mortality

rates even though the mean lengths vary greatly from

year to year (see Gedamke and Hoenig 2006).

Estimates were made for two regions: the northern

management area, comprising the Gulf of Maine,

southern New England, and Georges Bank, and the

southern management area, comprising the waters from

Rhode Island to North Carolina. It is of interest to see

how well those values are reproduced when mortality is

estimated from catch rates (Table 1) instead of mean

lengths.

Goosefish are believed to be fully vulnerable to the

survey trawl when they reach 30 cm in total length

(NEFSC 2002). We determined the first fully vulner-

able age-class using the von Bertalanffy growth models

developed by the National Marine Fisheries Service.

The growth parameters for the northern region are as

follows: L
‘
¼ 126.0 cm and K¼ 0.1080/year; those for

the southern region are 129.2 cm and 0.1198/year

(NEFSC 2002). No values were given for the

parameter t
0
, so a value of 0.0 years was assumed for

both regions. It is seen that fish from age 2.5 to age 3.5

have predicted lengths of 29.8–39.7 cm in the northern

region. Consequently, fish in the size range 30–40 cm

are taken to be the recruits and all fish above 40 cm are

TABLE 1.—Stratified mean number of goosefish caught per

tow in surveys off the northeastern United States, by size. The

surveys were conducted in the fall of each year.

Survey
year

Northern region Southern region

.40 cm .30 cm .44 cm .33 cm

1963 1.035 1.218 0.266 0.330
1964 0.777 0.938 0.311 0.333
1965 1.137 1.384 0.489 0.492
1966 0.172 0.234 0.189 0.189
1967 0.225 0.272 0.259 0.259
1968 0.228 0.307 0.411 0.411
1969 0.266 0.282 0.375 0.389
1970 0.120 0.168 0.439 0.451
1971 0.764 1.081 0.246 0.282
1972 0.289 0.558 0.455 0.476
1973 0.128 0.167 0.250 0.270
1974 0.349 0.442 0.260 0.276
1975 0.196 0.263 0.370 0.409
1976 0.231 0.253 0.577 0.616
1977 0.188 0.192 0.495 0.539
1978 0.258 0.357 0.408 0.432
1979 0.234 0.451 0.440 0.481
1980 0.344 0.577 0.338 0.346
1981 0.115 0.254 0.130 0.130
1982 0.430 0.577 0.341 0.418
1983 0.201 0.222 0.379 0.445
1984 0.234 0.336 0.234 0.305
1985 0.107 0.168 0.411 0.475
1986 0.048 0.099 0.189 0.232
1987 0.086 0.120 0.245 0.274
1988 0.168 0.274 0.217 0.260
1989 0.084 0.120 0.180 0.232
1990 0.148 0.254 0.219 0.349
1991 0.077 0.147 0.294 0.406
1992 0.042 0.139 0.234 0.315
1993 0.109 0.168 0.219 0.356
1994 0.079 0.204 0.344 0.709
1995 0.115 0.168 0.308 0.502
1996 0.182 0.224 0.208 0.342
1997 0.116 0.172 0.217 0.323
1998 0.053 0.157 0.157 0.376
1999 0.105 0.227 0.528 0.954
2000 0.159 0.251 0.588 0.924
2001 0.377 0.523 0.501 0.776
2002 0.238 0.325 0.575 0.660
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considered previously recruited animals. For the

southern region, the recruits are fish in the range 33–

44 cm.

We apply equation (1) to the catch rate data in Table

1 and Figure 1 to obtain annual estimates of survival

rate and then convert these to estimates of the

instantaneous rates of total mortality, Z, according to

the formula Z¼�log
e
(S) (Figures 2, 3). Data from the

1963 and 1964 surveys give rise to an estimate of

survival between the surveys, that is, between fall 1963

and fall 1964. We refer to this as the survival in 1964

because most of the time interval is in 1964. Not

unexpectedly, the results are highly variable and often

infeasible (i.e., estimates of the mortality rate are

negative).

We computed the arithmetic mean of the results from

equation (1) over the periods of stable mortality

identified by Gedamke and Hoenig (2006) from their

analysis of mean sizes (Table 2; Figures 2, 3). Gedamke

and Hoenig found that the periods of stable mortality

identified through their analysis of length data

corresponded well with recorded changes in the fishery

(i.e., price rises and concomitant increases in landings).

Averaging the annual estimates gives results roughly

similar to those obtained by Gedamke and Hoenig, but

the agreement is strong only in one comparison.

FIGURE 1.—Catch rates of goosefish in National Marine Fisheries Service groundfish surveys in two management regions off

the northeastern coast of the United States. The dashed line denotes catch rates of previously recruited fish (N
.aþ1

); the solid line

denotes catch rates of recruiting and previously recruited fish combined (N
.a

).
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We applied the estimators based on equations (2)

and (4) to those same ranges of years. The results based

on equation (2) were poor and are not shown here.

The results of applying the estimator based on

equation (4) are extremely close to the results of

Gedamke and Hoenig (2006) for four of the five

comparisons. Only for the period 1963–1976 for the

southern region was there a large discrepancy (Z ¼
0.33/year based on mean lengths and 0.55/year based

on equation 4).

FIGURE 2.—Estimates of the total instantaneous mortality rate (Z ¼ –log
e
[S], where S is the survival rate) for the northern

management area in three time periods obtained by Gedamke and Hoenig (2006) from the length frequencies of the survey

catches. Also shown are the annual estimates of Z obtained from equation (1) along with their averages over the three time

periods and the results of applying equation (4).

FIGURE 3.—Estimates of the total instantaneous mortality rate for the southern management area in two time periods obtained

by Gedamke and Hoenig (2006) from the length frequencies of the survey catches. Also shown are the annual estimates obtained

from equation (1) along with their averages over the two time periods and the results of applying equation (4). Note that two

extreme values of the estimator based on equation (1) are not shown.
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Sensitivity Analysis

Assumption that / ¼ S.—A key assumption in

applying equation (4) is that the parameter / is equal to

S. We specify departures from this assumption by the

equation cS ¼ /. Then equation (2) can be written

Itþ1 ¼ SIt þ cSrt; t ¼ 1; . . . ; T � 1:

The effect of assuming that c¼1 when it is really some

other value can be determined by multiplying all the

recruitment index values by the other value and then

reestimating the survival rate. We did this for the

northern management region data from 1963 to 1977

and converted the results to the instantaneous rates of

total mortality, Z. The computed value of Z is an

increasing function of the value of c and is described

by the equation computed Z ¼ 0.0554c þ 0.123, such

that when c¼ 1 the computed Z is 0.1784, as reported

in Table 2. If / is really 90% of S (i.e., c ¼ 0.9), the

estimate of Z would be 0.17286 and the percent

difference in results would be

100ð0:1784� 0:17286Þ=0:17286 ¼ 3%:

Thus, a 10% error in the specification of c results in a

3% error in the estimate of Z. The estimator based on

equation (4) is insensitive to model misspecification, at

least when applied to the goosefish data from 1963 to

1977.

Effects of systematic errors in age composition.—

There are two effects of systematic errors in the

specification of age composition. First, if only a portion

of the animals in age-group 1 (the recruits) is included

in the analysis, the result will be a positive bias in the

survival estimator. This is easily seen from equation

(1), where the denominator is made smaller by the

exclusion of some recruits. Similarly, including some

animals that will not reach the size of the second age-

group in 1 year in the new-recruits category results in a

negative bias. Similar results hold for the other models

(based on equations 2 and 4).

The second consequence of systematic misspecifi-

cation of age composition is that the estimators are no

longer unaffected by recruitment variability. We

demonstrate this by considering the estimator in

equation (1). Suppose the fraction a of age-group 1

(the recruits) included in the analysis is constant. Then,

as recruitment approaches zero, the estimator in

equation (1) approaches the survival rate, S. As

recruitment increases without bound, the estimator

tends to S/(1 – a). If recruitment is overestimated (some

animals that will not grow into age-group 2 in 1 year

are included in age-group 1) but it approaches zero,

then the estimator tends to the true survival rate S. If

recruitment is overestimated and it approaches infinity,

the estimator is too low and tends to S/(1 þ a). These

conclusions are justified in the appendix.

Discussion

We have presented a new approach to estimating

survival rate from multiple years of survey data. The

big advantages of this approach are that one does not

need to know the magnitude of the landings and does

not have to be able to age the catch beyond identifying

the recruits. We presented a general model (equation 2)

that allows for recruits to have a different survival or

catchability than previously recruited animals. Howev-

er, in practice it is often necessary to adopt an

additional assumption to obtain reasonably precise

and stable estimates. The more general model should

be less biased than the alternatives but at the expense of

greater variance.

For the goosefish example, it appears that the

survey catch rates are more variable than the mean

lengths and consequently that the precision of the

estimates from the new approach is less than those

based on the Gedamke and Hoenig (2006) approach

based on mean lengths. However, it should be noted

that both methods can be applied to data from the

trawl survey. For goosefish, it is reassuring that the

two approaches gave very similar results for five of

the six time–area comparisons. The estimates obtained

by averaging the two-year estimates from equation (1)

appeared reasonable in most cases. However, averag-

ing a set of numbers that contains nonsensical values

(survivals greater than 1.0) may be troubling and hard

to justify.

We relied on the model described by equation (4)

because the survey catches of goosefish were low and

the catch rates highly variable. In cases where a species

is better sampled, it may be worthwhile to use the

model in equation (2).

Our example involved survey catch rate data. It is

TABLE 2.—Estimates of the total mortality rate for goosefish

in two management areas by three methods. The estimates

from lengths are from Gedamke and Hoenig (2006); see text

for equations.

Period
From

lengths
From

equation (4)
Average from
equation (1)

Northern management area

1963–1977 0.14 0.18 0.07
1978–1988 0.29 0.28 0.19
1989–2002 0.55 0.48 0.39

Southern management area

1963–1976 0.33 0.55 0.37
1977–2002 0.58 0.56 0.47
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also possible to apply the method to commercial catch

rate data provided these represent relatively short

periods of time. For example, the catch rate in the first

two months of year t þ 1 can be compared with the

catch rate in the same period in year t. Restricting the

analysis to short periods of time within a year is

necessary for two reasons. First, catch rate in a time

interval is proportional to average abundance in that

interval. Thus, over an extended period the effort may

be large and the commercial catch rate will reflect both

the initial abundance and the depletion of the

population. The second reason for using a restricted

period of time is that catchability, recruitment, and

other factors may change seasonally so that catch rate

is harder to interpret.

In the appendix we investigate the impact of errors in

determining the fraction of the survey catch that will

recruit in the next year and place bounds on these

errors. In cases where errors in determining the catch

composition may be appreciable, the survival estima-

tors are more properly thought of as providing an index

of survival rather than absolute survival. That is, the

estimators can be used to monitor trends in the survival

rate over time rather than to quantify the level of

survival.
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Appendix: Effects of Systematic Errors in Age Composition on Survival Estimates

Referring to Figure A.1, we note that the survival

estimator in equation (1) can be viewed geometrically

as a ratio of areas

Ŝ ¼ b2

a1 þ b1

; ðA:1Þ

where Ŝ is the estimated survival, a
1

is the abundance

of recruits in year 1, and b
1

and b
2

are the abundances

of previously recruited animals in years 1 and 2,

respectively. If a portion of the animals that will recruit

in year 2, say, aa
1
, is excluded from the recruitment,

then the estimate of survival will be biased upwards.

Similarly, if some animals are included in the

recruitment that will not, in fact, recruit in year 2 (a
1

is specified as too large), the estimate will be biased

downwards.

We now consider how the magnitude of the

recruitment affects this result. We note that

b2 ¼ Sða1 þ b1Þ ðA:2Þ

when the survival of the recruits is the same as the

survival of the previously recruited animals. If a

portion of the recruitment, say, aa
1
, is excluded from

the calculation of survival, then equation (A.1)

becomes an erroneous estimate of survival, Ŝ
err

, given

by

Ŝerr ¼
b2

a1 þ b1 � aa1

¼ Sða1 þ b1Þ
a1 þ b1 � aa1

:

Suppose a
1

approaches zero. This implies that the

amount of recruitment not included in the calculation,

aa
1
, also approaches zero. Then, Ŝ

err
approaches S(b

1
/

b
1
) ¼ S. On the other hand, suppose a

1
approaches ‘

while a remains constant. Then

Ŝerr ! S
a1

a1 � a1a

� �
¼ S

1� a
:

Similarly, it can be shown that if recruitment is
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overstated by an amount a but recruitment approaches

zero, then the erroneous estimator approaches the true

survival rate, S. And, under the same circumstances, if

recruitment approaches infinity, the survival estimate

approaches S/(1 þ a).

FIGURE A.1.—Hypothetical length frequency distributions

showing two modes representing one identifiable age-class

(a
i
) and one ‘‘composite’’ or ‘‘plus’’ group consisting of

multiple age-classes (b
i
) for years i¼ 1, 2. The text discusses

the effect on the estimated survival rate of not including the

area marked aa
1

as part of recruitment in year 1. The length

frequencies are shown as triangular distributions merely for

convenience.

ESTIMATING SURVIVAL FROM CATCH RATES 1251


