A SIMPLE TECHNIQUE FOR STAINING GROWTH BANDS IN ELASMODRANCH VERTEBRAE
J. M. Hoening and C. A. Brown

A variety of techniques have been developed to stain or otherwise clarify growth bands in the vertebral centra of elasmobranchs (Hoening, 1979; Schwartz, 1983; Cailliet et al., 1983; 1986). Most recent studies have used variations of the alcian red S staining technique of LaMarca (1966), the silver nitrate technique of Stevens (1973), or the cedarwood of immersion procedure of Cailliet et al. (1983). These procedures are among the easiest to apply and seemingly provide good resolution of growth bands. However, several authors have concluded that additional efforts should be made to develop and improve aging methods to increase resolution of the crowded bands at the edges of the centra.

This note presents a simple, sensitive, and rapid method for staining elasmobranch vertebral centra that have been previously frozen, air dried, or stored in ethanol. The procedure uses cobalt nitrate and ammonium sulfide to stain the gill lamellae in the calcified bands. The staining procedure can be used with minor modifications on whole, split, or sectioned vertebrae.

PROCEDURE

The procedure can conveniently be divided into six steps, as follows: (1) preparation of vertebral centra, (2) immersion in cobalt nitrate, (3) wash in acid alcohol, (4) immersion in ammonium sulfide, (5) wash in acid alcohol, and (6) preservation of stained specimens. Between each step the centra are washed in distilled water for 10 seconds. These steps are described in detail below.

(1) Whole vertebrae are washed in running tap water overnight so that the centra can be easily separated with a blade. Vertebrae that were stored as 70% ethanol are washed in tap water overnight to remove the preservative. Whole vertebrae are to be stained, the tough layer of bone covering the outer surface of the centrum must be removed prior to staining. This can be accomplished by soaking the vertebrae in 10% nitric acid for 2 hr. Rinse in distilled water until the surface is free of contaminating tissue (approximately 15 to 30 min). Following use of nitric acid, the centra are washed in tap water for at least 20 min.

(2) Split vertebrae are to be stained, the centra should be cut in half (dorsally) with a saw, ground to one half their original size using a grinding wheel. The exposed face is then polished under tap water using a series of grits ranging from 180 to 6000 until the surface is smooth.

Vertebrae sections can also be prepared by cutting, grinding, and polishing.

(2) The centra are immersed and agitated gently in a 2% solution of cobalt nitrate for 15 min.

(3) Whole centra are washed in an equal solution of acid alcohol for 1.5 hr, according to the size of the vertebrae and the amount of vertebrae being washed for up to 15 min. This step appears to be the most critical in determining the quality of the results. If differentiation is unsatisfactory (poor contrast, etc.), the wash time should be increased. If the steps are too fast and have poor contrast, the wash time should be reduced. The acid alcohol is prepared by adding concentrated hydrochloric acid to 50% ethanol in a ratio of 1:5.

(4) Centra are again washed in acid alcohol, as in step 3. This slows the reaction and prevents the centrum from becoming progressively darker.

(5) Whole and split centra can be stained in 70% ethanol or air dried. Sections of centra are best stained by mounting on a glass slide with any appropriate mounting medium.
VTH

of the algalium of the growth
Schwaert, 1983,
from the algalium
were

Figure 1. a. Stained whole-cortex of an 87.5 cm fork length male common stingray (Mastacembelus armatus) from Rhode Island, diameter = 8 mm. b. Whole-cortex from a 34.4 cm fork length male bullhead (Ctenopharyngodon idellus) from southern Florida, diameter = 17 mm. c. Stained single core, polished and stained centrum from a 1.25 cm fork length starfish isomia (Isaster sp.) from southern Florida. Vortex measured 29 mm in diameter.
RESULTS AND DISCUSSION

Stoelting (1905) used cobalt, nitrate and ammonium sulfide to stain mammalian bones for pathology studies. Wallin (1957) stained telocentrotus scales with these reagents and suggested that this staining procedure might provide a sensitive indicator of recent calcification processes. Kearton (1965) evaluated this suggestion in detail and finally abandoned the idea of using Stoelting's reagents to detect recent calcification. Some shark vertebrae can contain large amounts of calcium in the form of apatitic (calcium phosphate) (Masse, 1977), and cyclical variations in calcium and phosphorous occur across the face of shark vertebral centra (Callicott et al., 1986), we felt it would be worth evaluating this combination of reagents for staining phosphate in elasmobranch vertebrae.

We used cobalt nitrate and ammonium sulfide to stain growth bands in whole dried vertebrae from a smooth hammerhead shark (Sphyrna zygaena, 28.7 cm total length, from Northwest Atlantic), several whole and split vertebrae from lemon sharks (Negaprion brevirostris, 60-225 cm fork length, from Southeast Florida) which had been previously frozen or stored in ethanol, and on whole vertebrae stored in ethanol from three other species: the smooth dogfish (Mustelus canis, various sizes, from Rhode Island), blue shark (Prionace glauca, various sizes, from northwest Atlantic), and sandbar shark (Carcharhinus plumbeus, various sizes, from northwest Atlantic). Results are shown in Figure 1.

The procedure described here provided as good or better results than those we obtained with silver nitrate or alizarin red S, particularly at the edges of the centra where bands are crowded and resolution tends to be a problem. The use of an acid alcohol wash to stop the reactions may also result in slight etching of the exposed surface. However, it appears that the dominant effect is due to etching rather than staining.

The cobalt nitrate/ammonium sulfide technique is simple, rapid, versatile, and inexpensive. In contrast, silver nitrate is rather expensive and its use requires a source of ultraviolet light. We have found that the silver nitrate method tends to produce large silver grains which can decrease the resolution of closely spaced bands. Alizarin red S stain must be applied over a period of several hours. We conclude that the use of cobalt nitrate and ammonium sulfide deserves further evaluation as a method for enhancing growth bands in elasmobranch vertebrae.

ACKNOWLEDGMENTS

We thank M. Reis for advice and use of laboratory and S. Greiner for assistance in effecting specimens. Initial work was conducted at the National Marine Fisheries Service Northeast Laboratory. Support was also provided through the Cooperative Institute for Marine and Atmospheric Studies by National Oceanic and Atmospheric Administration Cooperative Agreement No. NA85-05624. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation that may appear herein.

LITERATURE CITED


to stain mammal
C27

these reactants

sensitive indicator of
gestion to detail

- to detect recent

of calcium in

in calcite (Caliet et

on veins of for
tb bands in whole

if vertebrate from

from Southeast

and on whole
dogfish (Mustelus

various

plaice, varie-

ult than those we

of the centre

The use of an
ght etching of

is due to staining

acid, versatile, and

this use requires a

to of closely spaced

several hours. We

deserves further

branch vertebrae.

assistance in collecting

the Neogeneitalia

Agreement No. NAMS-

provincial governments.

PRELIMINARY REPORT

on Indo-Pacific fishes

for the first time

from this fossil

during re-examination

of the zooplankton

in which C.

abdominalis

SatO, 1913

17 females

and 22 males; a
calciﬁed cephoid endemic to the North

Paciﬁc boreal-temperate waters,

in November 1983 was reported as a new record

for the South Paciﬁc by Hiratsuka (1986).

Moreover, Acartia omoriBradford, 1976

(9 females and 10 males) and Oithona davisae,

1984

18 females),

zoooplankton sample in which C.

abdominalis

Sato, 1913

17 females

and 22 males; a
calciﬁed cephoid endemic to the North

Paciﬁc boreal-temperate waters,

in November 1983 was reported as a new record

for the South Paciﬁc by Hiratsuka (1986).

Moreover, Acartia omoriBradford, 1976

(9 females and 10 males) and Oithona davisae,

1984

18 females),

zoooplankton sample in which C.

abdominalis

Sato, 1913

17 females

and 22 males; a
calciﬁed cephoid endemic to the North

Paciﬁc boreal-temperate waters,

in November 1983 was reported as a new record

for the South Paciﬁc by Hiratsuka (1986).

Moreover, Acartia omoriBradford, 1976

(9 females and 10 males) and Oithona davisae,

1984

18 females),

zoooplankton sample in which C.

abdominalis

Sato, 1913

17 females

and 22 males; a
calciﬁed cephoid endemic to the North

Paciﬁc boreal-temperate waters,

in November 1983 was reported as a new record

for the South Paciﬁc by Hiratsuka (1986).

Moreover, Acartia omoriBradford, 1976

(9 females and 10 males) and Oithona davisae,

1984

18 females),

zoooplankton sample in which C.

abdominalis

Sato, 1913

17 females

and 22 males; a
calciﬁed cephoid endemic to the North

Paciﬁc boreal-temperate waters,