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Abstract.—In 1998, the barndoor skate Dipturus laevis was reported to have been locally extirpated in parts

of its northern range and to be potentially on the brink of extinction. Managers were faced with assessing the

species with virtually no information other than a limited number of individuals observed in annual

groundfish surveys. Since that time, a number of the primary life history parameters have been estimated, but

the population dynamics of the species remain largely unexplored. In this study, we use information from the

National Marine Fisheries Service (NMFS) annual groundfish surveys to investigate two critical components

of barndoor skate population dynamics: the relationship of recruitment to spawner abundance and the

maximum population growth rate. A strong stock–recruitment relationship was found in the fall survey data,

suggesting that recruitment is closely tied to spawner abundance. The Ricker and Beverton–Holt stock–recruit

models were fitted to the survey data, and estimates of the slope at the origin was generated. These parameters

provided an estimate of the maximum annual reproductive rate, which was then converted to an estimate of

the instantaneous maximum population growth rate of 0.37–0.38 per year. A second analysis was also

conducted using a Leslie matrix and data from the NMFS survey. Observed rates of population change were

used to estimate early life history parameters and incorporate density dependence into the density-independent

framework of a Leslie matrix demographic model. From this method, the instantaneous maximum population

growth for the barndoor skate was estimated to be 0.36–0.48 per year. Our results suggest that the species is

more resilient to fishing pressure than previously believed and is capable of growing at an instantaneous rate

in excess of 35% at low population sizes.

The barndoor skate Dipturus laevis is an elasmo-

branch that was believed to be particularly vulnerable

to fishing mortality and reported to be close to

extinction in parts of its northern range (Casey and

Myers 1998). A lack of both basic life history

information and an understanding of the overall

population dynamics of the species has hampered the

further assessment and management of North Atlantic

populations. Although recent studies have provided

estimates of basic life history parameters (Gedamke et

al. 2005), a lack of historical catch records precluded

the use of classic production models, and fundamental

aspects of the population dynamics remain unexplored.

Since the observed decline and the potential for

extinction of the species were attributed to overfishing,

an estimate of the maximum population growth rate is

one option to gain a better understanding of the

populations’ susceptibility to fishing pressure and

management options.

Recently, both stock–recruit and demographic mod-

els have been used to determine the intrinsic, or

maximum, rate of population increase (r
intrinsic

) and,

therefore, the maximum sustainable fishing pressure

(Myers et al. 1997, 1999; McAllister et al. 2001;

Gedamke et al. 2007). An important aspect of this

process that is commonly overlooked in elasmobranch

demographic models is the recognition that a popula-

tion will only grow at a maximal rate at the lowest

stock sizes (McAllister et al. 2001; Gedamke et al.

2007). Only in this condition will competition for

resources be at a minimum and the subsequent

increased survival result in r
intrinsic

. Mathematically,

this is expressed as

rintrinsic ¼ lim
N!0

1

N

dN

dt
; ð1Þ

where N represents population abundance (Shertzer et

al. 2008).

Stock–recruitment models address this issue because

they incorporate stock size explicitly in the analysis

and can be used to estimate the maximum growth rate

(r
intrinsic

) at low population sizes. In these models, the

underlying relationship—between spawners (stock)

and recruits—is a critical component to our under-

standing of the population dynamics of a species and is

directly tied to population size. The slope at the origin

(i.e., at the lowest stock sizes) can be converted to an

estimate of the maximum annual reproductive rate. The

maximum annual reproductive rate represents the
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number of spawners produced by each spawner per

year and can be used to obtain an estimate of the

maximum population growth rate (Myers et al. 1997).

Classic demographic analyses (e.g., life table or

Leslie matrix), on the other hand, are independent of

stock size and provide an estimate of the exponential

rate of population growth (or decline) based on a fixed

set of life history parameters. Alternatively, the model

can be thought of as providing the short-term rate of

population change under current conditions. Only

when schedules of survival and reproduction from a

depleted population are used in the construction of the

model will the estimated rate of population growth

approach r
intrinsic

. Parameter estimates from depleted

populations are rarely available, and therefore estimat-

ing r
intrinsic

remains difficult. In a recent study,

Gedamke et al. (2007) addressed this dilemma and

provided suggestions on how to incorporate stock size

and density-dependent compensation into the density-

independent framework of a Leslie matrix demographic

model.

In this study, we used information from the National

Marine Fisheries Service (NMFS) annual groundfish

surveys on Georges Bank and the Gulf of Maine to

develop stock–recruit and Leslie matrix models with

the goal of gaining insights into the population

dynamics of the barndoor skate. We followed the

methodology of Myers et al. (1997, 1999) for the

analysis of the stock–recruit relationship and the

methodology of Gedamke et al. (2007) for the

demographic analysis.

Methods

Available trawl survey data.—Research surveys

have been conducted by NMFS in U.S. and Canadian

waters of the northwest Atlantic for over four decades;

fall and spring surveys began in 1963 and 1968,

respectively (Reid et al. 1999). Data from the winter

survey, which overlaps the southern regions of the fall

and spring surveys, is also used in monitoring the

populations of the northwest Atlantic skate (family

Rajidae) complex, including the barndoor skate. This

survey began in 1992 and provides a shorter time series

than the fall and spring surveys. In addition, the gear

for the winter survey targets small flatfish: rollers (used

in the spring and fall surveys) are replaced with a chain

sweep covered by rubber disks and the addition of

54.9-m ground cables.

A stratified random sampling design is used to

provide an unbiased estimate of fish availability to the

sampling gears. Stations are stratified based on depth,

latitude, and historical fishing pattern. The surveys

were designed to sample groundfish and use a Yankee

bottom trawl. Surveys were generally conducted in 27–

366 m of water, and a deeper tow was occasionally

used in the canyons of the continental shelf. Although

slightly different configurations have been used over

the years, the gear has generally been rigged with 41-

cm rollers and a 1.25-cm (stretched mesh) cod end;

tows have been conducted at 6.5 km/h (3.7 knots) for

30 min at each station. Comparison trawl hauls have

been made to standardize results across the various

changes in the gear over the years. The data provided

by NMFS for use in this study were already

standardized. The spring and fall surveys are the

primary indices used by the New England Fisheries

Management Council and NMFS for the assessment of

the northwest Atlantic skate complex and cover the

distribution of the barndoor skate in United States

waters. From 1963 to 2007, between 167 and 374

survey tows were conducted annually in this region

(Figure 1). At each station, the number and weight of

each species were recorded in addition to the total

length of each individual (Figure 2).

Life history parameters.—Life history information

from Gedamke et al. (2005) was used as a primary

source to determine the parameters required for our

analysis. The von Bertalanffy growth parameters

reported in that study were a maximum length (L
‘

)

of 166.3 cm, a growth coefficient (k) of 0.1414 per

year, and an intercept (t
0
) of �1.29 years. The

maximum age observed in this study was 11 years;

however, a recent exploratory investigation of the

largest barndoor skate on record found a single, age-15

individual (T.G., unpublished observations). Since the

age distribution is probably truncated due to extensive

exploitation in the past, a maximum possible age of 25

was assumed.

Estimates of natural mortality (M) were calculated

using six different methods: (1) Pauly (1980), (2)

Hoenig (1983), (3) Peterson and Wroblewski (1984),

(4) Chen and Watanabe (1989), (5) Jensen’s (1996) age

at maturity method, and (6) Jensen’s (1996) k method.

Estimates for adults ranged from 0.16 per year from the

Chen and Watanabe (1989) estimator to highs of 0.21

and 0.25 per year from the two methods by Jensen

(1996). Very similar estimates for adult mortality

resulted from four of the methods, and we use an

estimate of 0.18 per year for M (Table 1). Note that an

estimate of water temperature is required for the Pauly

(1980) estimator, and we used 8.58C as reported by

Myers et al. (1997).

Life history data from Gedamke et al. (2005) were

used to calculate the number of recruits and the number

of spawners caught per tow in each year and by each

survey. A cumulative length frequency plot of all

individuals captured in the surveys indicates that

barndoor skate are fully vulnerable to the gear at

BARNDOOR SKATE STOCK–RECRUITMENT DYNAMICS 513



approximately 55 cm in all three seasonal surveys

(Figure 3). A length-to-age conversion was applied,

and the age at full recruitment to the gear was estimated

at 2 years, corresponding to a size of 54–69 cm. Thus,

animals captured in this size range were counted as

recruits. A female size-at-maturity value of 116 cm was

used as a minimum size cutoff to estimate the spawner

abundance index (Gedamke et al. 2005).

Model development: stock–recruit analysis.—The

relationship between the number of recruits and the

number of adults (i.e., stock–recruit relationship) is

commonly described by either the Ricker (1954) model,

R ¼ a � Sexp�bS; ð2Þ

or the Beverton and Holt (1957) model,

R ¼ ða � SÞ=½1þ ðS=KÞ�; ð3Þ

where R is recruitment and S is spawner abundance.

The parameter a has units of recruitment per spawner

and is an estimate of the slope of the function at the

origin (when S ¼ 0). The parameters K and b are

density-dependent terms that incorporate compensation

at low population sizes in the form of increased

survival. The product of b and S can be interpreted as

the density-dependent mortality, while the K parameter

of the Beverton–Holt model can be thought of as a

threshold that, when exceeded, begins to reduce the

rate of recruit survival to an asymptotic value. The

Ricker model, on the other hand, allows for overcom-

pensation in which recruit survival declines at very

high spawner abundances. Overcompensation can

result at these high spawner abundances from canni-

balism or as the demand for resources (e.g., food,

space, or both) in the environment exceeds the supply.

FIGURE 1.—Map of all stations sampled (n¼ 8,817) by the National Marine Fisheries Service annual fall groundfish survey

from 1963 to 2007. Note that only the Gulf of Maine and southern New England offshore strata (1–30, 33–40) are included in

this figure and in our analyses of the spring and fall surveys. The winter survey extends further south and includes strata 1–3, 5–

7, 9–11, 61–63, 69–71, and 73–75.

514 GEDAMKE ET AL.



The relationship between spawners and recruits must

take into account the lag period between the year in

which spawner abundance is recorded and the year in

which the resulting recruits appear in the survey. In the

case of the barndoor skate, egg cases have been

observed hatching in captivity after 11 months, so we

assumed an incubation period of 1 year (Parent et al.

2008). This, coupled with the 2 years it takes for

recruits to become fully vulnerable to the gear, results

in a 3-year lag period (e.g., spawners in 1995 give rise

to recruits in 1998). Data were paired with this 3-year

lag period, and both the Ricker and Beverton–Holt

models were fitted to the data using a maximum

likelihood analysis assuming a lognormal error struc-

ture. The probability density function of a lognormal

random variable x is

FIGURE 2.—Stratified mean (6SE calculated by collapsed strata method of Cochran 1977) barndoor skate catch per unit effort

(CPUE; fish/tow) during each of the National Marine Fisheries Service seasonal groundfish surveys. Strata that contained only 1

tow/year for more than 1 year of the survey were paired with similar adjacent strata (4 and 8; 12 and 15; 17 and 18) to provide a

conservative estimate of the survey variability.
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f ðx; l;r2Þ ¼ 1

xr
ffiffiffiffiffiffi
2p
p � exp � logex � lþ ðr2=2Þ½ �2

2r2

( )
:

ð4Þ

The product likelihood function (K) for n years of

observed recruits results by substitution (mean l ¼
E[log

e
R]; variance r2 ¼ var[log

e
R]). Thus,

K ¼
Yn

y¼1

1

logeRyr
ffiffiffiffiffiffi
2p
p

3 exp �
logeRy � logeRpred;y þ ðr2=2Þ
� �2

2r2

( )
;

ð5Þ

where R
y

is the observed catch rate of recruits in year y,

R
pred,y

is the catch rate of recruits predicted from

equation (2) or (3), and n is the number of spawner–

recruit pairs in the data set. The log likelihood is

proportional to

logeK }� n loger

�

Xn

y¼1

logeRy � logeRpred;y þ
r2

2

� �2

2r2
: ð6Þ

Equation (6) was maximized and parameters were

estimated using the NLP procedure in the Statistical

Analysis System version 9 (SAS Institute 2004).

The estimated slope at origin can then be standard-

ized to determine the maximum reproductive rate. The

TABLE 1.—Estimates of barndoor skate natural mortality calculated by six different methods: Pauly (1980), Hoenig (1983),

Peterson and Wroblewski (1984), Chen and Watanabe (1989), Jensen’s (1996) age at maturity method, and Jensen’s (1986) k
method (L

‘
, k, and t

0
are von Bertalanffy growth parameters defined in Methods).

Age
Hoenig

(maximum age)
Pauly (L

‘
, k,

temperature)
Jensen (age
at maturity) Jensen (k)

Chen and Watanabe
(age, k, t

0
)

Peterson and
Wroblewski (age, weight)

0 0.167 0.177 0.254 0.212 0.848 0.654
1 0.167 0.177 0.254 0.212 0.511 0.429
2 0.167 0.177 0.254 0.212 0.380 0.335
3 0.167 0.177 0.254 0.212 0.311 0.283
4 0.167 0.177 0.254 0.212 0.268 0.251
5 0.167 0.177 0.254 0.212 0.240 0.228
6 0.167 0.177 0.254 0.212 0.220 0.212
7 0.167 0.177 0.254 0.212 0.178 0.200
8 0.167 0.177 0.254 0.212 0.178 0.190
9 0.167 0.177 0.254 0.212 0.178 0.183

10 0.167 0.177 0.254 0.212 0.178 0.177
11 0.167 0.177 0.254 0.212 0.178 0.172
12 0.167 0.177 0.254 0.212 0.178 0.168
13 0.167 0.177 0.254 0.212 0.178 0.165
14 0.167 0.177 0.254 0.212 0.178 0.162
15 0.167 0.177 0.254 0.212 0.178 0.160

FIGURE 3.—Length frequency distribution (5-cm length bins) of all barndoor skates captured during each National Marine

Fisheries Service seasonal groundfish survey.
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maximum annual reproductive rate is a critical

parameter in population dynamics and can be used to

estimate r
intrinsic

and to estimate the limits of

overfishing (Mace 1994; Myers et al. 1997; Myers

and Mertz 1998). Our calculations closely follow those

of Myers et al. (1997, 1999). The first step in

standardizing the slope at the origin is to scale the

slope by the spawners produced per recruit (SPR)

under conditions of zero fishing mortality (F; SPR
F¼0

),

which gives â:

â ¼ a � SPRF¼0: ð7Þ

The value of SPR
F¼0

is commonly calculated as

SPRF¼0 ¼
XAmax

a¼1

wapaexp½�Mða� 1Þ�; ð8Þ

where w
a

is weight at age, p
a

is proportion mature at

age, and A
max

is the oldest age (e.g., Goodyear 1993);

the formulation in equation (8) presupposes that the

stock–recruit relationship was estimated with spawners

expressed as spawning biomass (i.e., weight was used

as a surrogate for fecundity). That is not the case in our

analysis, where we fit the stock–recruit relationship to

the catch per unit effort (CPUE) in number of spawners

and the CPUE in number of recruits. Therefore, we

calculate SPR
F¼0

as

SPRF¼0 ¼ ½expð�M � AlagÞ�=½1� expð�MÞ�; ð9Þ

which gives spawning abundance per recruit (equation

6.4.4 in Quinn and Deriso 1999). The SPR
F¼0

is the

number of spawners that would result from each recruit

in the absence of fishing pressure given the lag time

(A
lag

) for a recruit to reach the age at maturity (A
mat

).

For our application to the barndoor skate, A
mat

is 6.5

years and the resulting A
lag

is 4.5 years because our

recruit index is for age-2 animals. We note that our

formulation explicitly assumes that all barndoor skate

are fully mature at age 6.5 and older and that all mature

individuals have the same relative fecundity.

The result of equation (7), â, represents the number

of recruits per recruit or spawners per spawner (or

alternatively, the maximum lifetime production of

spawners per spawner) at very low spawner abundanc-

es. We then calculate the number of spawners produced

by each spawner per year. If adult survival under only

natural mortality is p
s
, then the maximum annual

reproductive rate (ã) results from

ã ¼ âð1� psÞ: ð10Þ

The maximum annual reproductive rate can then be

used to approximate r
intrinsic

as

exprintirnsic
� Alag � exprintirnsicðAlag�1Þ�M � ã ¼ 0: ð11Þ

This equation can be solved iteratively for r
intrinsic

given an estimate of M, ã, and A
lag

. See Myers et al.

(1997, 1999) for further details and explanation.

Demographic model: Leslie matrix analysis.—An

alternative approach to estimating the maximum

population growth rate is the use of demographic

models. Demographic analysis simply tracks the

change over time in number of animals at different

ages or stages given a schedule of age- (or stage-)

specific reproductive output and mortality (Caswell

2001). The female population vector N at time tþ 1 is

given by

Ntþ1 ¼ ANt; ð12Þ

where A is a female-only population projection matrix

(i.e., Leslie matrix) containing a schedule of reproduc-

tion and mortality (i.e., fecundity, survival, F, and

A
mat

). The predicted rate of population increase

(r
predicted

) is defined here to be the instantaneous rate

of growth of the population given the parameters used

in the projection matrix and a stable age distribution. It

is directly related to the largest eigenvalue (k) of the

matrix A (i.e., r
predicted

¼ log
e
k; Vaughan and Saila

1976; Caswell 2001).

The r
predicted

, or instantaneous growth rate, calculat-

ed from these models is a constant and, as such, it only

represents a snapshot of population growth based on a

fixed set of life history parameters and a given schedule

of fishing pressure. To estimate the maximum

population growth rate, the model must be constructed

using parameters from a depleted population and

without the effects of fishing (Gedamke et al. 2007).

Only in the case of a depleted population will

competition for resources (e.g., food and space) be at

a minimum and the effects of density-dependent

compensation result in a maximal survival rate and,

therefore, maximal population growth rate. The

difficulty in this approach arises from the lack of the

required estimates for life history parameters of species

in depleted conditions.

In a recent study, Gedamke et al. (2007) reviewed

the basic logic behind the construction of a demo-

graphic model and provided suggestions on how to

incorporate the logic of density-dependent compensa-

tion into the density-independent framework of a Leslie

matrix demographic model. Our explanation of the

methodology closely follows that of Gedamke et al.

(2007) and uses the four definitions of instantaneous

population growth rates described in that paper.

r
intrinsic

¼ the maximum per capita population growth

rate (can only occur in the absence of fishing, at the

lowest population size, when density-dependent
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compensation is at a maximum); a stable age

distribution is assumed.

r
conditional

¼ the per capita rate of population growth in

the absence of fishing mortality given a schedule of

survival and reproduction (conditional on population

size and resulting density-dependent compensation)

and given a stable age distribution. In a logistic

model, r
conditional

is equal to r
intrinsic

(1� N/K), where

N is the population size and K is the equilibrium

population size at an F of 0 (i.e., K represents the

carrying capacity).

r
predicted

¼ the predicted rate of population growth (per

capita) when all other parameters are known

(assuming a stable age distribution and a given

population size); r
predicted

equals r
conditional

minus

effects of any fishing mortality.

r
achieved

¼ the observed per capita rate of population

growth; no assumption of a stable age distribution is

made.

We now explain how r
intrinsic

can be estimated from

a Leslie matrix. Our analysis consists of four primary

steps: (1) estimating r
achieved

from survey data; (2)

constructing a Leslie matrix and solving for the product

of fecundity (g), egg survival (S
egg

), and first-year

survival (S
0
) that results in an r

achieved
that is equal to

r
predicted

; (3) removing F from the model to estimate

potential rate of population growth at specified

population size (r
conditional

); and (4) extrapolating

r
conditional

to zero population size to estimate r
intrinsic

.

We start our analysis by obtaining an estimate of

r
achieved

from the NMFS fall survey data. We only use

the fall survey data in our demographic analysis

because it provides the longest time series of data

and is the only survey that was conducted during the

population decline observed between 1963 and 1968.

A log transformation of the survey indices (numbers

caught per tow) provides an observed rate of

population growth. Estimates were made from different

segments of the time series where population growth

(or decline) appeared to be constant and for time

periods where estimates of total mortality were

available from Gedamke et al. (2008).

We then constructed a Leslie matrix and solved for

the product of g, S
egg

, and S
0

so that the model

predicted a rate of population growth that matched

what we estimated from the survey data (r
achieved

¼
r

predicted
). There are a couple of important points to note

about this step of the analysis. First, the r
predicted

will

only be exactly equal to the r
achieved

if a stable age

distribution is present in the population and if all other

parameters are known.

Second, as is the case for many oviparous elasmo-

branchs, accurate estimates of g, S
egg

, and S
0

are

unavailable for the barndoor skate. Thus, we use

estimates of total mortality from Gedamke et al. (2008)

and solve the model for the product of these three

parameters, which results in a growth rate equal to the

observed rate of population growth (Vaughan and Saila

1976; Vaughan 1977; Gedamke et al. 2007). This

approach takes into account the uncertainty in

estimates of g, S
egg

, and S
0
, which is likely to be

strongly tied to the population size and a key

mechanism in the process of density-dependent

compensation. Estimating the product of these three

parameters incorporates density dependence into the

analysis without the need to estimate each parameter

individually (i.e., the cube root of gS
egg

S
0

replaces each

parameter in a standard Leslie matrix). That is,

doubling one parameter (e.g., S
0
) and halving another

(e.g., g or S
egg

) results in the same rate of population

growth. This has an important implication in deter-

mining the reasonableness of parameter values. An S
0

estimate of 200%, for example, does not imply a poor

fit of the model to the data. Rather, it implies that the

apportionment of recruitment (gS
egg

S
0
) to individual

parameters is in error, and this is inconsequential for

projecting short-term changes in the population. On the

other hand, if one constrains the values of S
egg

and S
0

to be less than or equal to 1.0, one can determine the

minimum value of g that would be required for the

population to grow at the observed rate.

This approach provides an estimate of recruitment

(gS
egg

S
0
) that is specific to the conditions being

modeled and dependent on the estimated F and the

observed rate of population growth. By removing

fishing pressure from the model, we obtain an estimate

of how fast the barndoor skate population could grow,

given the same life history parameters, under the

condition of no fishing pressure (i.e., r
conditional

). No

selectivity curve is available for our application to the

barndoor skate; however, based on an analysis of the

length frequencies of survey catches, we know that

animals are fully recruited to the gear at age 2. We

assume that some fishing pressure is occurring on

younger animals, and we apply 50% of F to age-1

animals. A sensitivity analysis with varying age of

recruitment was also conducted to see how robust our

results were to this assumption.

The next step is to use the estimates of r
conditional

to

estimate r
intrinsic

. To get an estimate of r
intrinsic

, we must

first recognize that the instantaneous potential popula-

tion growth rate, r
conditional

, depends on the size of the

population. This is a property of all population models

with density dependence. According to the logistic

model, population growth rate is related to the intrinsic

rate of increase in the absence of fishing by the linear

relationship
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rconditional ¼ rintrinsicð1� N=KÞ; ð13Þ

with N as the size of the population being modeled and

K as the virgin population size (i.e., carrying capacity).

Note that this model implies that the instantaneous rate

of growth (r
conditional

) will be equal to zero when N

equals K and that r
conditional

will approach r
intrinsic

as the

population size approaches zero. When fishing occurs

on all ages at an instantaneous rate F (per year),

rpredicted ¼ rconditional � F ¼ rintrinsicð1� N=KÞ � F:

ð14Þ

Rearranging the equation and presenting it in terms of

survey indices, we can solve for the intercept (r
intrinsic

)

as

rintrinsic ¼
rconditional

1� ðI=IKÞ
¼ IKrconditional

IK � I
; ð15Þ

where I represents the survey index at the time we

measured r
achieved

and I
K

represents the index value of

a virgin population. We use the highest value of the

survey index over all years to represent I
K

. This

occurred at the start of the time series.

Results

Stock–Recruit Analysis

A strong stock–recruit relationship was present in the

fall and spring survey data but was not obviously

apparent in the winter data (Figures 4–7). Estimates of

the slope at the origin were the most precise from the

fall survey data; the fall survey estimates were 4.99

recruits/spawner (lower 95% confidence bound¼ 2.69)

from the Ricker model and 5.46 recruits/spawner (lower

95% confidence bound¼2.71) from the Beverton–Holt

model (Table 2). Results from the spring survey had

larger SEs but were comparable with fall estimates;

spring estimates were 6.62 and 10.11 recruits/spawner

from the Ricker and Beverton–Holt models, respec-

tively. Although the slope at the origin was not as well

defined in the spring survey, the lower confidence

bounds (1.87 and 1.91 for the Ricker and Beverton–

Holt models, respectively) were comparable with fall

confidence bounds. The Beverton–Holt model could

not be fit to the winter survey data, and the Ricker

model provided a highly uncertain estimate of 34.16

recruits/spawner. We limit the presentation and discus-

sion of the results to the spring and fall survey data.

The resulting estimates of the maximum annual

reproductive rate (ã) were 2.22–2.43 from the fall data

and 2.95–4.50 from the spring data. Estimates of

r
intrinsic

, transformed from fall ã through equation (11),

were 0.37 per year from the Ricker model and 0.38 per

year from the Beverton–Holt model. Estimates of

r
intrinsic

from the spring survey were 0.42 and 0.49 per

year from the Ricker and Beverton–Holt models,

respectively.

If we carry the lower 95% confidence bound for the

slope at the origin parameter through our calculations

of r
intrinsic

, estimates of 0.21 and 0.27 per year result

from the spring and fall surveys, respectively (Table 2).

This indicates that although the stock–recruit relation-

ship is not precisely defined, the lower bounds are

FIGURE 4.—Barndoor skate stock–recruit relationship (recruit catch per unit effort [CPUE] versus spawner CPUE) from the

National Marine Fisheries Service fall groundfish survey from 1963 to 2007 (n¼14 year pairs in which at least one spawner and

one recruit was caught). The year in which recruits were measured (2-digit number presented with each data point) and the

resulting Ricker and Beverton–Holt stock–recruit relationships are indicated.
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reasonably constrained. A further sensitivity analysis

was also conducted to evaluate the models’ response to

our estimates of M and A
lag

. Within a range of

reasonable values for these parameters, model results

were sensitive only when both parameters were either

underestimated or overestimated. When varying in

opposite directions, model results were relatively

insensitive. In the worst-case scenario with an M of

0.24 per year and an A
lag

of 5.5 years, the lower bound

of the fall Beverton–Holt model was reduced to 0.15

per year from the original estimate of 0.27 per year.

Since we have no reason to assume that parameters

would be in error in the same direction or that estimates

would be out of the range explored, there is no

evidence that our model is overly sensitive to these

parameter inputs.

FIGURE 5.—Barndoor skate stock–recruit relationship (recruit catch per unit effort [CPUE] versus spawner CPUE) from the

National Marine Fisheries Service spring groundfish survey from 1968 to 2007 (n¼ 10 year pairs in which at least one spawner

and one recruit was caught). The year in which recruits were measured (2-digit number presented with each data point) and the

resulting Ricker and Beverton–Holt stock–recruit relationships are indicated.

FIGURE 6.—Barndoor skate stock–recruit relationship (recruit catch per unit effort [CPUE] versus spawner CPUE) from the

National Marine Fisheries Service winter groundfish survey from 1992 to 2007 (n¼ 7 year pairs in which at least one spawner

and one recruit was caught). The year in which recruits were measured (2-digit number presented with each data point) and the

resulting Ricker stock–recruit relationship are indicated. The Beverton–Holt model could not be fit to the winter survey data.
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Demographic Model: Leslie Matrix Analysis

From the fall survey, the barndoor skate population

was observed (r
achieved

) to be declining at an

instantaneous rate of �0.32 per year between 1963

and 1979 and recovering at an instantaneous rate of

0.36 per year between 1996 and 2005 (Figure 7). Total

instantaneous mortality in the same time periods was

estimated from mean lengths and catch rates by

Gedamke et al. (2008) to be 0.89–1.04 per year during

the decline (1963–1979) and 0.04–0.23 per year during

the recovery (1996–2005). Using an M-value of 0.18

per year, F was thus estimated to be 0.71 and 0.86 per

year for the decline and 0.05 per year for the recovery

(a total mortality rate of 0.04 is not consistent with an

M of 0.18 per year). An F of 0.1 per year was also

included as a sensitivity test in our analysis of the

recovery. A Leslie matrix was constructed with these

parameters and solved for the gS
egg

S
0

value that

resulted in the r
achieved

observed in the surveys.

Assuming that S
0

and S
egg

are less than or equal to

1.0 for all four scenarios, a minimum g-value of

between 3.6 and 29.7 female eggs/year would be

required for the population to grow at the observed

rate. This is consistent with estimates of g for similar

oviparous species and is well below the observed

annual egg production (.80 eggs/year) of captive

barndoor skate at the Montreal aquarium (Musick and

Ellis 2005; Parent et al. 2008).

With fishing pressure removed from our base model

(50% selectivity at age 1 and 100% by age 2) and

keeping all other parameters constant, r
conditional

was

FIGURE 7.—Barndoor skate survey indices (log
e
[stratified mean number of fish/tow]) from the National Marine Fisheries

Service fall groundfish survey on Georges Bank and the Gulf of Maine. Data were log
e

transformed to estimate the rate of

population change. Resulting estimates for the observed rate of population change during periods of decline (1963–1979) and

recovery (1996–2005) are indicated by the slope parameter (in bold) in the linear equations.

TABLE 2.—Results of the stock–recruit analysis for the barndoor skate. The survey and model are indicated (n¼ number of

nonzero stock–recruit year pairings used in the analysis). The Beverton–Holt model could not be fit to the winter survey data.

Parameters are the slope at the origin (a; with associated SEs and 95% confidence intervals [CIs]; the three upper confidence

bounds [CBs] in bold could not be determined by profile likelihood, and Wald CBs are presented); carrying capacity (K) from the

Beverton–Holt model; density-dependent parameter (b) from the Ricker model; lifetime production of spawners per spawner (â);

and maximum annual reproductive rate (ã; i.e., number of spawners produced by each spawner per year). The maximum

population growth rate is r
intrinsic

; values in parentheses are r
intrinsic

calculated from the lower CB of a.

Survey (n)
Stock–recruit

model

a

K/b â ã Log
e
ã

r
intrinsic

(lower 95% CB)Mean SE 95% CI

Fall (14) Beverton–Holt 5.46 2.57 2.71–10.50 0.05 14.74 2.43 0.89 0.38 (0.27)
Ricker 4.99 1.80 2.69–12.43 10.28 13.48 2.22 0.80 0.37 (0.27)

Spring (10) Beverton–Holt 10.11 15.74 1.91–40.97 0.01 27.30 4.50 1.50 0.49 (0.21)
Ricker 6.62 5.19 1.87–16.8 29.21 17.88 2.95 1.08 0.42 (0.21)

Winter (7) Beverton–Holt
Ricker 34.16 17.38 13.27–146.57 26.46 92.25 15.20 2.72 0.72 (0.54)
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estimated to be 0.20 and 0.29 per year from the decline

and 0.39 and 0.43 per year from the recovery.

Estimates of r
conditional

were sensitive to the age at entry

into the fishery only when the decline was modeled. In

this case, the calculated values of r
conditional

declined

significantly as age at entry increased, while estimates

from the recovery were robust to this aspect of our

model (Figure 8).

During both the decline and recovery periods, the

barndoor skate population was clearly depleted and our

estimated r
conditional

should approximate r
intrinsic

. Using

equation (15) or by plotting our estimates of r
conditional

versus the corresponding survey index (Figure 9), an

estimate of r
intrinsic

is obtained. For both the recovery

and the decline, the analyzed time segments covered

similar stock sizes (i.e., survey indices); the decline

contained the highest values. Between 1998 and 2001,

halfway through the modeled recovery, survey indices

averaged 0.08 fish/tow, approximately 10% of the high

of 0.80 fish/tow recorded in 1963. For the decline, the

range of indices was similar to that of the recovery but

showed very little absolute change in value after 5

years (1968). Thus, we approximated the population

size using an average survey index of 0.22 fish/tow

from the 1963–1973 data. Solving for the intercept, we

obtain r
intrinsic

estimates of 0.28 and 0.41 per year from

the decline and 0.44 and 0.48 per year from the

recovery, depending on the level of F assumed (Figure

9).

Discussion

The results of our study suggest that the barndoor

skate population in the U.S. waters of the North

Atlantic is able to grow at a rate that is higher than

previously believed and higher than those reported for

most other elasmobranchs studied (Casey and Myers

1998; Frisk et al. 2002; Cortés 2004). The population

grew at an instantaneous rate of approximately 0.36 per

year between 1996 and 2005. The results of our

demographic model, which are dependent on this

observed growth rate, suggest that at even lower

population sizes there is still some scope for compen-

sation and that rates of up to 0.48 per year are possible.

Estimates of r
intrinsic

from the stock–recruit analysis

suggest that the barndoor skate population has recently

been growing at or near a maximum estimated rate of

0.38 per year.

Prior to this work, only two studies have attempted

to estimate the maximum population growth rate of the

barndoor skate. Having no direct information available,

FIGURE 8.—Estimates of r
conditional

(defined in Methods) from a Leslie matrix demographic analysis for the barndoor skate.

Estimates from the decline (1963–1979) and recovery (1996–2005) periods are indicated, as is the sensitivity of r
conditional

estimates to assumptions of age at fishery entry and assumed fishing pressure for each scenario (indicated by the number next to

each data point). The dashed line indicates the most likely scenario given that the cumulative length frequency distribution

suggests full vulnerability to the fishery by age 2. The solid line represents the observed rate of population growth between 1996

and 2005, which is thus a lower bound for r
intrinsic

.
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researchers were forced to make numerous assumptions

about the basic life history information of the species.

Casey and Myers (1998) suggested that the barndoor

skate is similar to the European common skate D. batis,

and they utilized the life history parameters of this

species (A
mat
¼ 11 years; g ¼ 47 eggs) to make some

broad conclusions based on a life table analysis. They

suggested that an instantaneous mortality rate (Z) of 0.4

per year applied to all ages would drive the barndoor

skate to extinction on Georges Bank and that the colder

waters and resulting later maturation in parts of the

species’ northern range would make it vulnerable to

extinction at half that level (Z¼ 0.2 per year). Note that

all the estimates of population growth in this

manuscript are also instantaneous rates, so they are

directly comparable with estimates of Z. Since Casey

and Myers’ (1998) upper limit estimate to sustainable

mortality was calculated by applying F to all ages, it is

equivalent to an estimate of r
intrinsic

.

Frisk et al. (2002) reported an r
intrinsic

of 0.2 per year,

and determined that an F of 0.20 per year (applied to all

ages after the first year) and an M of 0.09 per year

would result in negative population growth and is

therefore unsustainable. In their study, they developed

a stage-based model for the barndoor skate and

compared their results with those of age-based models

for the little skate Leucoraja erinacea and the winter

skate L. ocellata. As in the study by Casey and Myers

(1998), Frisk et al. (2002) were faced with a paucity of

data and used parameters from the European common

skate for g (47 eggs) and a maximum age of 50 years,

which they translated to an M estimate of 0.09 per year

by the Hoenig (1983) method. Empirical relationships

from Frisk et al. (2001) provided estimates for A
mat

ranging from 9 to 16 years, and they chose an

intermediate value of 12 years. Although the Frisk et

al. (2002) study used a stage-based model, Mollet and

Cailliet (2002) found that the results of similar age-

based models provide almost identical results and

should therefore be comparable with our study.

The results of our work are comparable with the

approximate upper limits of total mortality presented in

the study by Casey and Myers (1998). They reported

that a total mortality rate of 0.4 per year would drive

the species to extinction when adult survival and

juvenile survival are equal; however, they also reported

an upper limit of 0.45 per year when juvenile mortality

is twice that of adults. It is not possible for a higher

juvenile survival rate to result in a greater resilience to

fishing pressure (i.e., higher upper limit of mortality).

FIGURE 9.—Extrapolation of calculated r
conditional

values (defined in Methods) to a zero population size to estimate r
intrinsic

for

the barndoor skate based on decline (1963–1979) and recovery (1996–2005) periods and two assumed levels of fishing mortality

(F) for each period. The r
conditional

estimates assuming an age at fishery entry of 1.5 years (shaded region in Figure 8) were used,

and r
intrinsic

was estimated as the y-intercept. The rightmost point represents the highest survey index value (fish/tow) recorded in

the fall survey and is assumed to represent virgin conditions, where a long-term growth rate of zero would be realized. Note that

if the virgin survey index was in error (i.e., underestimated due to fishing prior to 1963 or overestimated due to survey

variability), the estimates of r
intrinsic

would not be drastically altered because the extrapolation is over such short ranges of survey

indices. Alternatively, the gray arrow indicates that the same extrapolation can be done with two r
conditional

values measured at

two different population sizes (see Gedamke et al. 2007 for details). An r
intrinsic

estimate of 0.55 per year would result from this

approach but is dependent on the highly sensitive estimates from the decline analysis.
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However, the specific details of their model were not

presented, and the cause of this slight discrepancy

remains unknown. Regardless, the results of our

demographic model also suggest that 0.45 per year is

a reasonable upper limit to the maximum population

growth rate and, therefore, a reasonable approximation

of the upper limit to the maximum sustainable total

mortality. The results of the Frisk et al. (2002) model

suggest lower population growth rates and, therefore, a

much greater sensitivity to fishing pressure.

However, it is difficult to compare the results of

these three demographic studies. Our work is the only

one to have empirical estimates for many of the life

history parameters, yet we were also forced to make

assumptions about parameters that have not been

estimated (e.g., M). Unlike the other two studies, our

approach incorporates density-dependent compensation

into the analysis and uses observed growth rates to

estimate a parameter that includes the survival of the

youngest animals, g, and S
egg

. As such, our results are

directly tied to the observed growth rates estimated

from the NMFS survey data. Our estimates of r
achieved

were made over relatively long time periods and a wide

range of stock sizes. This approach provided popula-

tion growth rates that were less variable than those that

would have been obtained using smaller time seg-

ments. The trade-off in this decision is the potential

bias that could result from smoothing over longer time

periods. Also, determining the appropriate stock size

corresponding to our estimated rate of growth is

difficult when the stock size is changing. Thus, there

is some uncertainty in all of the stock sizes (i.e., those

corresponding to the virgin population, recovery, and

decline) used to estimate r
intrinsic

from equation (13)

and in Figure 9. Since our estimates of r
conditional

were

made at low abundances, the extrapolation is over short

distances and the final results are not expected to be

drastically altered by changing the estimates of relative

stock size.

Despite these concerns, the assumptions, logic, and

details of our approach are clear; like any demographic

analysis, the interpretation of the absolute results must

take these factors into consideration. For example, we

consider the results of our analysis from the recovery

phase to be more reliable than those from the decline

due to (1) the shorter extrapolation from the recovery

phase’s initial stock size and (2) the weaker assump-

tions we were forced to make about age at entry into

the fishery for the recovery phase. Matrix models are

known to be particularly sensitive to the pattern of

exploitation, and this was exhibited in our results

(Figure 8; Caswell 2001). In our analysis of the

population decline, high estimates of F resulted in high

sensitivity to our assumption of age at selection.

Sensitivity was quite low under the low values of F
seen during the recovery.

In our study, we also have the luxury of comparing

the results of our demographic analysis with those of

an independent approach: our stock–recruit analysis.

For most stocks, the relationship between recruits and

spawners is highly variable and not easily defined

(Cushing 1995; Myers and Barrowman 1996). Al-

though one would expect the reproductive strategy of

an elasmobranch to result in a clear relationship, data to

test this hypothesis are generally unavailable. Howev-

er, as far as we are aware, the only other empirically

derived stock–recruit relationship that has been dem-

onstrated for an elasmobranch is for spiny dogfish

Squalus acanthias (P. Rago, Northeast Fisheries

Science Center, personal communication).

In our case, a stock–recruit relationship for the

barndoor skate was apparent in both the spring and fall

surveys. However, there is enough noise even in the

fall data to limit the precision with which the slope at

the origin could be estimated. Despite this uncertainty,

the analysis shows that the lower confidence bounds on

the slope are fairly well constrained and provide

confidence that our estimates of r
intrinsic

are not likely

to be significantly overestimated. This is an important

point and of greatest interest to conservation and

management discussions. A minimal estimate of

r
intrinsic

allows conservative estimates for maximum

sustainable fishing pressure to be generated; under-

standing the bias in the other direction and the potential

maximum value of r
intrinsic

are of less importance. Our

analysis also assumes that there is no fishing pressure

prior to recruitment, which is unlikely and will also

result in an underestimate of the slope at the origin and,

therefore, underestimation of r
intrinsic

(Brooks and

Powers 2007).

In comparison with the analysis of over 700 teleost

spawner–recruit relationships compiled by Myers et al.

(1999), our results suggest that the barndoor skate has a

relatively low maximum annual reproductive rate. For

a majority of the species in the study of Myers et al.

(1999), the maximum annual reproductive rate ranged

from 1 to 7 spawners/spawner. Our results put the

barndoor skate at the lower end of this spectrum;

estimated maximum annual reproductive rates were

2.22 and 2.43 spawners/spawner from the fall survey.

This is consistent with the reproductive strategy of the

species.

We have presented two independent methods that

result in very similar estimates for the maximum

population growth rate of the barndoor skate. The

primary uncertainty in both methods is the upper limit

rather than the lower bound. For the demographic

analysis, for example, an observed growth rate of 0.36
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per year serves as an obvious minimal estimate of

r
intrinsic

. Some uncertainty does arise from the extrap-

olations to lower stock sizes that suggest possible

growth rates of around 0.5 per year. The analysis of the

fall stock–recruit relationship, on the other hand,

provides r
intrinsic

estimates of 0.37 and 0.38 per year

(lower 95% confidence bound ¼ 0.27 for both).

Estimates from the spring data are less precise; r
intrinsic

is estimated at 0.42 and 0.49 per year (lower 95%
confidence bound¼ 0.21 for both). Since some fishing

mortality of prerecruits is likely to be occurring, these

estimates should be biased low, as described by Brooks

and Powers (2007). The interpretation from the results

of both analyses suggests that r
intrinsic

is greater than

0.36 per year and possibly as high as 0.50 per year.

The results of this study are based on the assumption

that immigration and emigration are not occurring.

Although it is not possible with the available data to

prove that this is the case, we explored two aspects of

the survey data to see if this assumption was violated.

First, there appears to be no evidence within the survey

area that significant changes in distribution have

occurred. Second, there has been no obvious ‘‘sponta-

neous generation,’’ where larger animals appear

without a previous increase in smaller animals. Thus,

the two tests we could devise show no evidence of

immigration. The data suggest that barndoor skate

populations are capable of increasing fairly quickly

under favorable circumstances.

Although our study suggests that barndoor skate

populations are capable of growing at relatively fast

rates and are less susceptible to fishing pressure than

previously believed, the population declines that were

observed during the 1960s remind us that the species is

sensitive to exploitation. Estimates of r
intrinsic

provide a

key piece of information to our understanding of the

population dynamics because they represent an upper

limit to sustainable exploitation. Thus, our results

provide valuable information that can be used in the

development of management benchmarks and in

monitoring the populations. For example, by using

lower and upper bound estimates of 0.35–0.50 per year

from our study, one can employ simple surplus

production theory to estimate an upper and lower

bound for the F at maximum sustainable yield as half

of r
intrinsic

(e.g., 0.35/2¼ 0.175 per year; 0.50/2¼ 0.25

per year).
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